
LT UIC FILE CP

LCD

In

OTIC
EL.ECTE

OF DE04 1989

CORRELATION SIGNATURES OF SPREAD
SPECTRUM SIGNALS USING ARTIFICIAL

NEURAL NETWORKS
THESIS

John W. DeBerry
Captain, USAF

AFIT/GE/ENG/89D.1O

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

'aPw iorlipuab muo i 0I2,

AFIT/GE/ENG/89D-10

CLASSIFICATION OF ACOUSTO-OPTIC
CORRELATION SIGNATURES OF SPREAD
SPECTRUM SIGNALS USING ARTIFICIAL

NEURAL NETWORKS

THESIS

John W. DeBerry
Captain, USAF

AFIT/GE/ENG/89D-10

DTIC
Approved for public release; distribution unlimited. ELECTE

S B D'

AFIT/GE/ENG/89D- 10

CLASSIFICATION OF ACOUSTO-OPTIC
CORRELATION SIGNATURES OF SPREAD
SPECTRUM SIGNALS USING ARTIFICIAL

NEURAL NETWORKS

THESIS
John W. DeBerry
Captain, USAF

AFIT/GE/ENG/89D- 10

Approved for public release; distribution unlimited.

AFIT/GE/ENG/89D-10

CLASSIFICATION OF ACOUSTO-OPTIC

CORRELATION SIGNATURES OF SPREAD

SPECTRUM SIGNALS USING ARTIFICIAL

NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

John W. DeBerry, B.S.,B.S.E.E.

Captain, USAF

May, 1989

Approved for public release; distribution unlimited.

Acknowledgments

There are many people to whom I owe a debt, with regard to the development

and completion of this thesis. First, I acknowledge the sacrifices made by my wife,

Alice, and my children, Chapele, and Sean. They shared the burden of the long

hours spent doing this thesis. I am indebted to Dr. David M. Norman, Dr. Steven

K. Rogers, and Dr. Mark E. Oxley for the knowledge, advice, and time they willingly

shared to guide me through this research. I also wish to thank Captain Gregory L.

Tarr for his help in setting up and using his NeuralGraphics simulator on the SUN

4 workstation.

I would also like to thank Dr. Matthew Kabrisky and Squadron Leader Alan

P. Callaghan, Royal Australian Air Force, for their encouragement and acting as

sounding boards for a great number of ideas. Finally, a special thanks to Dr. Charles

Garvin, Harry Diamond Laboratories. He worked many long hours producing the

correlation signature data files used in this thesis.

John W. DeBerry

Agoessioa For

tNTIS Ga&iij r
DTIC TAB
ulu=ounced 0
JustIrioation

% By:

SDistribution/
Availability Codeu

Availad/r
iiDist Special,

Table of Contents

Page

Acknowledgments 11

Table of Contents iii

List of Figures vii

List of Tables viii

Abstract x

I. Introduction 1-1

1.1 Historical Background 1-1

1.2 Problem Statement 1-3

1.3 Scope 1-4

1.4 General Approach 1-4

1.5 Thesis Organization 1-5

II. Background Material 2-1

2.1 Introduction 2-1

2.2 Basic Concepts of ANNs 2-1

2.2.1 The Node 2-2

2.2.2 Topology 2-3

2.2.3 Learning Algorithms 2-4

2.3 Current Research in ANNs 2-7

2.3.1 Application Oriented Research 2-8

2.3.2 Enhancement Oriented Research 2-10

2.4 Summary 2-12

iii

Page

111. Methodology 3-1

3.1 Introduction 3-1

3.2 Resources 3-1

3.2.1 The Correlation Product Data 3-1

3.2.2 The ANN Simulator 3-3

3.2.3 Data Set Construction 3-4

3.2.4 Definitions and Notation 3-5

3.3 Experiment Design 3-10

3.3.1 Training Performance 3-10

3.3.2 Characterization of ANN Performance with the

P Matrix Model 3-10

3.3.3 Controlling P Matrix Symmetry 3-12

3.3.4 Improvement of Classification Performance via

Majority Vote Rule 3-13

3.3.5 Influence of Training Data Sets, Initial Weights,

and Exemplar Presentation Order on Network

Solutions 3-15

3.3.6 Summary 3-16

3.4 Analytical Methods 3-16

IV. Results 4-1

4.1 Introduction 4-1

4.2 Training Performance 4-1

4.2.1 Average Error History 4-2

4.2.2 Average Right Classification Histories on Train-

ing Data 4-2

4.2.3 Average Good Classification Histories on Train-

ing Data 4-3

4.2.4 Average Right Classification Histories on Test

Data 4-5

iv

Page

4.2.5 Average Good Classification Histories on Test

Data 4-5

4.2.6 Summary of Training Performance 4-8

4.3 Characterization of ANN Performance with the P Matrix

Model 4-8

4.4 Controlling P Matrix Symmetry 4-11

4.5 Improvement of Classification Performance via Majority

Vote Rule 4-13

4.6 Influence of Training Data Sets, Initial Weights, and Ex-

emplar Presentation Order on Network Solutions. . . 4-16

4.7 Summary 4-22

V. Conclusions and Recommendations 5-1

5.1 Conclusions 5-1

5.1.1 Training Performance 5-1

5.1.2 Characterization of ANN Performance with the

P Matrix Model 5-2

5.1.3 Controlling P Matrix Symmetry 5-3

5.1.4 Improvement of Classification Performance via

the Majority Vote Rule 5-4

5.1.5 Influence of Training Data Sets, Initial Weights,

and Exemplar Presentation Order on Network

Solutions 5-5

5.2 Recommendations 5-6

Appendix A. Data Tables A-I

Appendix B. Data File Samples and Processing Software B-1

B.1 Preprocessing of Correlation Product Data Files . .. B-1

B.2 Construction of Datasets B-5

B.3 Processing of NeuralGraphics Output B-8

v

Page
Appendix C. Table of Percentage Points of the Wilk-Shapiro Statistic C-1

Bibliography BIB-i

Vita VITA-i

Ai

List of Figures

Figure Page

1.1. Detection Scenario 1-3

2.1. Nonlinear Functions 2-3

2.2. Computational Capability of a Node 2-4

2.3. Three-layer Perceptron 2-5

3.1. Path of Correlation Product Data 3-2

3.2. Diagram of Majority Vote Networks 3-9

4.1. Training Histories for Average Total Error 4-2

4.2. Training Histories of Right Classification on Training Data . . 4-3

4.3. Training Histories of Good Classification on Training Data . . 4-4

4.4. Training Histories of Right Classification on Test Data for Run 2 4-6

4.5. Training Histories of Right Classification on Test Data for Run 3 4-6

4.6. Training Histories of Good Classification on Test Data for Run 2 4-7

4.7. Training Histories of Good Classification on Test Data for Run 3 4-7

4.8. Run 2 Incorrectly Classified Exemplar Counts 4-20

4.9. Run 3 Incorrectly Classified Exemplar Counts 4-20

4.10. Run 4 Incorrectly Classified Exemplar Counts 4-21

4.11. Run 5 Incorrectly Classified Exemplar Counts 4-21

B.1. Direct Sequence Correlation Product CORR18 Before Processing B-3

B.2. Direct Sequence Correlation Product CORR18 After Processing B-3

B.3. Frequency-Hopped Correlation Product CORR148 After Processing B-4

B.4. Frequency-Hopped Correlation Product CORR148 After Processing B-4

vii

List of Tables

Table Page

3.1. Summary of Experiment Run Parameters 3-17

4.1. Summary Statistics for Distributions of Run 1 and Run 1A . . . 4-9

4.2. Results of Test for Normality for Run 1 and Run la Distributions 41-10

4.3. Results of Hypothesis Tests Between Run 1 and Run la Distribu-
tions 4-10

4.4. Summary Statistics for Distributions of Run 1 and Run 2S . . 4-12

4.5. Results of Test for Normality for Run 1 and Run 2S Distributions 4-12

4.6. Results of Hypothesis Tests Between Run 1 and Run 2S Distribu-

tions 4-13

4.7. Summary of Means for P(good) Distributions of Runs 2 through 5 4-14

4.8. Results of Test for Normality for Distributions of Runs 2 through 5 4-15

4.9. Results of Hypothesis Tests Between PDFs of Single and Majority

Vote Nets for Run 2 through Run 5 4-16

4.10. Partial List of Incorrectly Classified Test Exemplars in Run 2 Through

Run 5 4-17

A.1. Observed Probability Matrices for Run 1 A-2

A.2. Observed Probability Matrices for Run la A-3

A.3. Observed Probability Matrices for Run 2 Single Nets A-4

A.4. Observed Probability Matrices for Run 2 Majority Vote Nets A-5

A.5. Calculated Probability Matrices for Run 2 Majority Vote Nets A-6

A.6. Observed Probability Matrices for Run 3 Single Nets A-7

A.7. Observed Probability Matrices for Run 3 Majority Vote Nets A-8

A.8. Calculated Probability Matrices for Run 3 Majority Vote Nets A-9

A.9. Observed Probability Matrices for Run 4 Single Nets A-10

viii

Table Page

A.10.Observed Probability Matrices for Run 4 Majority Vote Nets A-11

A.11.Calculated Probability Matrices for Run 4 Majority Vote Nets A-12

A.12.Observed Probability Matrices for Run 5 Single Nets A-13

A.13.Observed Probability Matrices for Run 5 Majority Vote Nets A-14

A.14.Calculated Probability Matrices for Run 5 Majority Vote Nets A-15

A.15.Incorrectly Classified Test Exemplars for Run 2 Through Run 5 A-16

ix

AFIT/GE/ENG/89D-10

Abstract

The primary goal of this research was to determine if Artificial Neural Networks

(ANNs) can be trained to classify the correlation signatures of direct sequence and

frequency-hopped spread-spectrum signals. Secondary goals were to determine (1)

if network classification performance can be modeled with a conditional probability

matrix, (2) if the symmetry of the matrices can be controlled, and (3) if using

a majority vote rule over independently trained networks improves classification

performance.

Correlation signatures of the spread-spectrum signals were obtained from United

States Army Harry Diamond Laboratories. The signatures were preprocessed and

separated into various training and testing data sets. Thirty samples of network re-

sponses for several sets of traini- , conditions were gathered using a neural network

simulator.

ANNs trained directly on correlation signature data yielded classification ac-

curacies on test data at or near 80%. The probability matrices were stationary with

regard to test sets and the ability to shift the symmetry of the matrices was demon-

strated. Improvement of classification accuracy via majority vote was possible if the

nets were trained on different data sets. An average improvement of 1.8% was found

to be statistically significant for a = 0.05. A metric was developed to estimate the

similarity of the solutions found by networks in a given training run.

x

CLASSIFICATION OF ACOUSTO-OPTIC

CORRELATION SIGNATURES OF SPREAD

SPECTRUM SIGNALS USING ARTIFICIAL

NEURAL NETWORKS

I. Introduction

1. 1 Historical Background.

Over the past two decades, use of spread-spectrum systems in the Department

of Defense has become increasingly common. This is primarily due to the militar-

ily desirable antijam (AJ), antiinterference, and low probability of intercept (LPI)

characteristics of these signals [1). It is reasonable to assume that our adversaries

will use spread-spectrum systems in any future conflict. Naturally, it follows that

we should prepare to defeat the AJ and LPI characteristics of these signals in order

to deny our enemy the free use of the electromagnetic spectrum.

In order to disrupt a hostile communications signal, we must be able to detect

and classify the signal. Much of the current research is focused on solving this prob-

lem. Toward that end, researchers at the U.S. Army Harry Diamond Laboratories

have developed a one-dimensional time-integrating acousto-optic (AO) correlator ca-

pable of 1015 operations per second [2]. The device performs the correlation transform

1-1

several orders of magnitude faster than even the most powerful digital computers.

This correlator can be used in an intercept receiver to detect and capture the corre-

lation signatures of spread-spectrum signals. Currently, the output of the correlator

is examined directly by a human operator or digitized and run through curve-fitting

routines on digital computers. The objective is to quickly recognize the correlation

signature and obtain information about its time domain modulation characteristics.

Researchers at U.S. Army Harry Diamond Laboratories have suggested using

Artificial Neural Networks (ANNs) to classify spread-spectrum communications sig-

nals. The ANN would be trained to recognize and classify specific input features

present in the correlation signatures of several types of spread-spectrum signals.

These features correspond to time domain characteristics of the signal. Classification

of the signals in this manner essentially extracts information about the modulation

parameters used to construct the signal. In an eventual hardware implementation,

the network would operate in real time at the output of an AO correlator. In a

detection scenario, a priori known features would be used to train the net. The net

would send an alarm upon detection of those features. The package would then be

mounted in a remotely piloted vehicle (RPV) and flown over an area of interest as

shown in Figure 1.1. A first step in this effort would be to construct and train an

ANN to determine whether a particular input spread-spectrum correlation signature

is a direct sequence (DS) or frequency-hopped (FH) signal.

1-2

RPV-bourne

Intercept Package

4-
Unknown

Transmitter

Figure 1.1. Detection Scenario [2]

1.2 Problem Statement.

The primary objective of this thesis is to answer several questions:

1. Can ANNs be trained to classify DS and FH correlation signatures, and if so,

at what level of classification performance?

2. Can a trained ANN's response to previously unseen signatures be accurately

modeled and described by a transition probability matrix similar to those used

to describe communication channels? If so, can the symmetry of these matrices

be controlled? Control of matrix symmetry would allow network classification

responses to be tailored for a particular application.

1-3

3. Can classification accuracy be improved by using a majority vote decision rule

over the response of an appropriate number of ANNs trained to classify the

same correlation signatures?

1.3 Scope.

The intent of this thesis effort is to determine the applicability of ANN technol-

ogy to the classification of spread-spectrum correlation signatures. The classification

will be performed by means of ANN simulation software. The simulated ANN will

be trained to classify DS and linearly stepped FH correlation signatures. The re-

sults of training will be evaluated by observing the ANN response to test data. The

second question posed in the problem statement presumes a positive answer to the

first question. Once ANNs are successfully trained to classify correlation signature

data, an examination will be performed of the transition probability matrix model.

If trained ANNs can be satisfactorily described by transition probability matrices,

then an attempt to control the resulting symmetry will be made. Finally, the per-

formance of composite networks composed of three single nets using a majority vote

rule will be compared to the performance of individual nets.

1.4 General Approach.

The approach to answer the questions posed in the problem statement was

broken down into three phases: basic research and experiment set-up, collecting

experiment data, and analysis of the data. The first phase involved a review of

1-4

current literature and research in the area ot ANN theory and applications, selection

of appropriate ANN simulation software implementing the most promising topology

and training algorithm, and preparation of the input data sets for use with the

selected simulation software. The second phase consisted of training and performance

testing a number of ANNs under various conditions with correlation signature data

sets. In the final phase of the thesis effort, the performance data is analyzed and final

conclusions drawn. Conclusions and recommendations will be based on observation

and analysis of experimental results.

1.5 Thesis Organization.

This chapter served as an introduction and general overview of the thesis effort.

Chapter two provides a discussion of the fundamental concepts of ANNs and a review

of recent ANN research. Chapter three contains a complete description of resources

used, definitions and notation, and how the experiments were constructed and per-

formed. Chapter four presents the results and analysis of the experiments described.

The fifth and final chapter contains specific conclusions along with recommendations

for future research.

1-5

II. Background Material

2.1 Introduction.

This background material is limited to discussion of work relevant to the spe-

cific problem of applying ANNs as classifiers for continuous valued input vectors or

waveforms similar to the output of the AO correlator. The material is divided into

two distinct parts. The first part introduces the basic concepts and terminology com-

monly used in the ANN literature. The discussion provides only what is necessary

to understand the second part, which presents summaries of the major findings of

more recent work in the application and enhancement of ANNs. For a more detailed

study, the reader is referred to the cited works.

2.2 Basic Concepts of ANNs.

An excellent beginner's guide to ANNs can be found in an article by Lippmann

[3], which discusses the basic concepts of ANN models and describes six common

architectures. Two of these models, the Kohonen self-organizing feature map (Ko-

honen net) and the multi-layer perceptron, can be applied to the problem at hand

because they accept continuous valued inputs. In this thesis , the focus is on the

multi-layer perceptron. According to Lippmann, ANN models reflect an extremely

simplified model the current understanding of how biological nervous systems work.

He states that an ANN model is fully specified by the computational characteris-

2-1

tics of its basic computing unit, network topology, and learning algorithms used for

training the net [3:4, 6]. The following sections discuss these parameters as they

apply to the multi-layer perceptron.

2.2.1 The Node. The fundamental computing unit of an ANN is the node,

which is analogous to the neuron in biological nervous systems. The computing

power of a node is fairly limited. Lippmann expresses its output as a nonlinear

function of the weighted sum of its inputs, as follows:

N-I

Y =f('XiVi - 0) (2.1)
i=O

where

Y = output
Wi = connection weights
Xi = inputs

0 = threshold

Depending on the application, the nonlinear function may be a hard limiter,

threshold logic, or a sigmoid, as shown in Figure 2.1. It should be noted here

that a multi-layer perceptron using a back propagation training algorithm requires a

continuously differentiable function [3:17]. Typically this is a sigmoid function, also

known as a squashing function, of the form:

1
(a) 1 + (2.2)

2-2

Af(a))Af((a)

+ +1+1

0 0 0

-1

HARD LIMITER THRESHOLD LOGIC SIGMOID

Figure 2.1. Nonlinear Functions [3:5]

where a is the argument of the function in Equation (2.1). The schematic repre-

sentation of Equation (2.1) is shown in Figure 2.2.

2.2.2 Topology. When many nodes are massively interconnected in parallel

or in layers, the network as a whole is capable of performing complex computations

at high speeds. The way in which nodes are interconnected defines a topology. We

are particularly interested in the topology of multi-layer perceptrons.

A multi-layer perceptron is composed of one or more layers of nodes between

the input and the output layer of nodes. These inner layers are referred to as hidden

layers. Each node in a layer is interconnected to all the nodes in the preceding and

following layers. Thus, the node receives input from each of the nodes in the previous

layer (or from the net inputs) and sends its output to all nodes in the next layer,

as shown in Figure 2.3. Although it is possible to have more, the usual number of

2-3

f f(a) Y

XN-1 xWN.t

Figure 2.2. Computational Capability of a Node [3:5]

layers is three. According to Lippmann [3:16], " ... no more than three layers are

required in perceptron-like feed-forward nets because a three-layer net can generate

arbitrarily complex decision regions." It can be shown that two layer networks also

have this ability, but may require more training iterations to reach an equivalent

solution [4].

2.2.3 Learning Algorithms. When individual nodes are interconnected and

organized into a network topology, the network can be trained with a learning algo-

rithm to perform a specific task. The learning algorithm specifies the way in which

the weights between nodes are updated during training. Initially, the weights of an

untrained net are set to small random values. A number of input examples, referred

to as a training data set or training set exemplars, are presented to the network one

at a time. At each presentation, an error signal is generated and the weights updated

so that the error is minimized via a gradient search. Training continues until the

2-4

OUTPUT

YO YM-1

OUTPUT
LAYER

SECOND x
HIDDEN
LAYER

FIRST Xi N
HIDDEN 0
LAYER

Xo XN-1

INPUT

Figure 2.3. Three-layer Perceptron [3:16]

weights no longer change or the change is less than some threshold value. At this

point training is terminated [3]. The heart of the training algorithm is the way the

error signal is computed and minimized.

Training algorithms can be separated into three categories: unsupervised, su-

pervised, and self supervised. In unsupervised training, the network is given no

information as to what class the input belongs to. The error signal is computed

solely as a function of the current input and output. On the other hand, in super-

vised learning, the net is provided information about the correct classification (the

2-5

desired output) for the present input. Thus, the error signal is a function of the cur-

rent network output and the desired output [3:19]. In self-supervised learning, the

network monitors its performance internally, feeding back an error signal to itself [5].

The multi-layer perceptron is trained with supervision using the back propaga-

tion gradient algorithm, which is a generalized form of the least mean square (LMS)

algorithm. Because of the multiple layers, an error signal for each layer must be

produced. For the output layer the error signal is given by:

bj = Yj(1 - Yj)(dj - Y) (2.3)

where Y1 is the output of node j, and di is the desired output of node j. Equation 2.3

is the partial derivative of the error with respect to the output layer weights [4]. For

the hidden layers, the error is computed a little differently, since there is no way

to specify the desired output of hidden nodes. An error signal for a hidden layer is

given by:
6j = X;(1 - X;) Wik (2.4)

k

where X is the output of node j (or input j), and k ranges over all nodes in the layer

above. The weights and error signals are computed and updated from the output

layer back to the input in a recursive fashion. The weights in each layer are updated

2-6

according to:

Wil(t + 1) = Wii(t) + ?6j3X + (Wij(t) - Wij(t- 1)) (2.5)

where,

Wij = weight from hidden node (or input) i to node j
Xi = output of node j (or input j)

r7 = learning rate
6j = error term for node j
a = momentum gain

The learning rate, q, controls how fast the weights converge. The momentum

gain, a, weights the contribution of the previous update to the current update. Both

of these parameters are set to a value between 0 and 1. Multi-layer perceptrons

trained with the back propagation algorithm can be used to determine which class

an ,nknown input is most similar to. The input to the trained network may be

corrupted by noise or in some way different than the inputs used for training. In

either case, the network must classify an input which is not exactly the same as the

inputs used to train the network [3].

2.3 Current Research in ANNs.

The following paragraphs summarize some of the recent research efforts in

which ANNs were used to classify real world, continuous valued data. The dis-

cussions are limited to presenting the purpose or objectives of the research, a gen-

eral description of the experiment, and the overall results or major findings. The

2-7

research efforts are divided into those which were application oriented and those

that were enhancement oriented. The application efforts included experiments in

training three-layer perceptrons with the back propagation algorithm as described

in Section 2.2.3. The enhancement efforts were directed more towards improving

the training performance by modifying the back propagation algorithm or network

structures.

2.3.1 Application Oriented Research. A great deal of ANN research in the

military community is directed towards the problem of recognition and classification

of targets from sensor data. Successful development of this capability would be the

first step in constructing autonomous weapons systems. Troxel [6] and Gorman [7]

conducted research in this area.

Troxel trained a three-layer perceptron to classify multi-function laser radar

data of tanks and trucks at various aspect angles. His approach was to first obtain

segmented target images using a doppler segmenter developed by Ruck [8]. The

segmented images were then transformed into a position, scale, and rotation invariant

(PSRI) feature space. A correlation was performed between the transformed data

and the feature space itself. The correlation peak was found and a window of 49

data points around the peak was extracted for classification. Once these data points

were normalized, Troxel [6:1-594] said the data could "...be thought of as a 49

dimensional vector of length I." These vectors were then used to train the networks.

Troxel reported a maximum classification accuracy of 80% on test data sets. In

2-8

addition, he suggested a procedure for selecting an appropriate number of nodes for

each hidden layer and observed that greater numbers of training vectors would be

needed to ensure good classificttion performance of real world data.

Similar experimental work done by Gorman (7] involved the classification of

sonar returns from undersea objects. The primary objective of Gorman's experiments

was to determine if an ANN could learn to distinguish the sonar returns from a metal

cylinder (target) from the returns from a cylindrical rock (non-target). The raw data

for the experiment were spectrograms of the sonar returns of the cylinder and rock

at various aspect angles, where aspect angle refers to the angle from which the

objects were illuminated with the sonar pulse. The sonar returns were transformed

into a spectral envelope representation by integrating over sampling apertures of the

short-term Fourier transform spectrogram. Sixty samples of the spectral envelope

were normalized and used as input to the network. Two layer perceptrons with

various numbers o" hidden nodes were trained and performance tested. The networks

were trained on two types of data sets: aspect-angle independent and aspect-angle

dependent. In the former case, the sonar returns used for training were selected

at random without regard to aspect angle. In the latter case, the returns used for

training were chosen so as to ensure that all aspect angles were represented. The best

test set classification accuracy, 90.4%, was yielded by a network with 12 hidden nodes

and trained on the aspect-angle dependent training set. In general, Gorman found

that greater numbers of hidden nodes reduced performance variations, and training

2-9

with aspect-angle dependent data sets resulted in the best classification accuracy.

In other words, for best results, make sure the training set contains examples of all

the various flavors and colors of the things to be recognized.

2.3.2 Enhancement Oriented Research. Several of the most recent ANN re-

search efforts conducted at the Air Force Institute of Technology (AFIT) involved

exploration of methods to improve network training performance. Training perfor-

mance is defined by the number of training iterations required for the network weights

(and thus its classification performance) to converge to relatively constant values.

The classification accuracy of a network is simply the percent of correct responses to

a set of inputs. Usually, a test set of exemplars, not included in the training set, is

used for this purpose. The various approaches discussed in the following paragraphs

include:

1. modifying error minimization algorithms.

2. modifying the error signal.

3. modifying the computational functions of the network nodes.

4. combining two network structures and algorithms into one larger network.

Each of these approaches was recently investigated in thesis efforts at AFIT. In addi-

tion, the performances of the enhanced networks were compared to the performances

of the basic three-layer perceptron trained with the first order back propagation gra-

dient method described in Section 2.2.3. All of the networks were eventually trained

2-10

on the Ruck [81 data sets, thus establishing a common reference for judging the

algorithm modifications.

Piazza [9] performed experiments training three-layer perceptrons using a sec-

ond order error minimization technique in the back propagation algorithm. He also

trained networks with the first order methods: the basic back propagation gradient

method, and back propagation with a momentum term (momentum method). In

the gradient method, a in Equation 2.5 is set to zero. Piazza found training perfor-

mance of the momentum and second order methods significantly better than that

of the gradient method. The second order method was only slightly better than the

momentum method. Average test set classification performances were 75%, 78%,

and 78% for the gradient, momentum, and second order methods, respectively.

Several approaches to improving network training performance were demon-

strated by Lutey [10]. He attacked the problem in three different ways: modifying

the error generating function, varying the rise rate of the sigmoid, and implementing

more complex weighting functions in the nodes. Networks were trained with each of

the proposed improvements and their performances compared to the baseline per-

formance of the gradient method. As before, all networks were trained on the Ruck

data. All three techniques showed significant improvements in training performance

by reducing the iteration required for convergence over the baseline case.

2-11

One final technique for enhancement was suggested by Tarr [11]. He per-

formed an experiment in which two different network structures, a Kohonen net and

multi-layer perceptron, were combined into one network. The Kohonen net served

to organize and simplify the input data. The outputs of the Kohonen net were then

fed to the perceptron which performed the classification. Again, the result was a

significant reduction in training iterations to reach convergence. The hybrid net-

work had many more nodes than a three-layer perceptron back propagation net of

equivalent classification performance. Tarr observed that it appeared that the hybrid

net was trading a reduction in training time (or iterations) for numbers of nodes.

The test set classification performance accuracy for the best case hybrid network

was 74%, which was essentially equivalent to the baseline gradient back propagation

perceptron. In addition, Tarr observed that hybrid networks performed better than

multi-layer perceptrons when there were ambiguous decision regions in the data set,

and vice versa for unambiguous data sets.

2.4 Summary.

The problem at hand is to determine if ANNs can be used to classify the

correlation signatures of spread-spectrum communications signals. The literature

examined in previous sections indicates that it should be possible to train a three-

layer perceptron to yield a classification accuracy in the range of 75% to 90% using

any one of the techniques or algorithms described. Also, in most cases, some sort of

data transformation and/or normalization was performed on real world data before

2-12

presentation to an ANN. Finally, it is apparent that most researchers average the

network performances over a number of training trials. This immediately implies

that random processes are at work and that statistical analysis of the distributions

of performance would be the appropriate analysis tool.

2-13

III. Methodology

3.1 Introduction.

This chapter provides information concerning the details of how the experi-

ments were performed. First, a description of the resources used is presented. This

is followed by a description of how each of the experiments was designed and imple-

mented. Finally, the manner in which the results of the exeriments were analyzed is

given.

3.2 Resources.

This section will cover the descriptions of all the resources used to accomplish

the experiments performed in this thesis. The following paragraphs describe the

spread-spectrum correlation product data files, the artificial neural network (ANN)

simulator, and the preprocessing performed on the correlation product data in order

to use it with the simulator.

3.2.1 The Correlation Product Data. The spread spectrum correlation sig-

natures were obtained from the sponsor of this thesis, Harry Diamond Laboratories

(HDL). The signatures were generated by simulating various direct sequence (DS)

and frequency hopped (FH) signals and feeding them into an acousto-optic (AO)

correlator. Different signatures of each type of signal were generated by varying sev-

eral modulation parameters; chip rate, carrier frequency, psuedo-random code, etc.

3-1

AO MC6800 2 Zenith
Correlator PC

Signal

FAT
Inper

Figure 3.1. Path of Correlation Product Data. (1) AO correlator output (2) out-
put of MC6800 microprocessor (3) upload files to mainframe (4) files
transferred across MILNET to AFIT [2]

The FH signals were not driven by a psuedo-random code, but were stepped across

frequency ranges by a linear stepper. For the remainder of this thesis, exemplars

derived from DS signatures will be known as class 1 exemplars, while those derived

from FH signatures will be class 2 exemplars.

The output of the AO correlator for a given signature was sampled and written

to an ASCII file as a column of numbers. These files all contained 1,000 data points.

The files were transmitted from HDL to an AFIT computer via MILNET using the

DoD file transfer protocol (FTP). Figure 3.1 shows a block diagram of the process.

The files were then downloaded to a personal computer for the preprocessing into

the format required by the ANN simulator.

3-2

3.2.2 The ANN Simulator. The ANN simulator chosen for this thesis was

the NeuralGraphics simulator written by Captain Greg Tarr [111. The simulator was

originally designed to run on a Silicon Graphics IRIS workstation. After a minor

modification to turn off the graphics display, the software was ported to and run

on a SUN 4 workstation. Two other minor modifications were made to support the

data requirements of the experiments. First, a terminal test routine was added. The

routine writes the network response to the test data set to a file. The file contains a

test exemplar label, the true class, and the network's classification decision for each

exemplar in the test data set. In addition, a training history file for the networks

was also written to a file. The history files contain the outcome of performance tests

after every 1,000 training iterations until training was terminated. A sample of both

types of these files can be found in Appendix B. The second modification to the

software concerned the setting of the seeds for the random number generator. The

generator is used to select values for the initial weight values of the nets at the start

of training and to randomly select an exemplar for presentation to the net during

training. These training conditions were controlled by varying how and when the

generator seed was selected. For example, when it was desired that successive nets

be trained from the same initial weight state, the seed for selecting the initial weights

was set to the same arbitrary constant for each net trained. If it was desired that

successive nets be trained from different initial weight states, the seed was set to the

3-3

current value of the system real time clock. Control over the order of presentation

of training exemplars was obtained in a similar manner.

The NeuralGraphics simulator allows the user to select one of several network

structures and training algorithms. The back propagation networks all use the up-

date rules described in Section 2.2.3. The values of the learning rate r7 was 0.3, while

the momentum gain a was 0.8. The simulator also allows user specification of the

number of nodes in the hidden layers of the network. As pointed out by Piazza [9],

Tarr [11], and Troxel [61, there is no known method for selecting the best number and

arrangement of hidden layer nodes. In short, one usually resorts to a trial and error

search for a combination that yields reasonably good results. Preliminary training

runs showed that the networks trained relatively well over a wide range of combi-

nations and numbers of hidden layer nodes. Of the various combinations tried, ten

nodes in the second hidden layer and 18 nodes in the first hidden layer appeared

to yield the most consistent classification performance. In addition, it was observed

that, usually, no improvement in performance occurred after 20,000 training itera-

tions. These above mentioned parameter values were used for training all networks

in this thesis and 20,000 iterations was used as the condition to terminate train-

ing. For further information on the NeuralGraphics simulator, the reader is referred

to [11].

3.2.3 Data Set Construction. As previously stated, the correlation signature

data files contain 1,000 data points and are not normalized. The number of out-

3-4

put nodes and input nodes uf a network is determined by number of classes to be

recognized and the number of elements in the input exemplar. Since presentation

of all 1,000 elements of a data file as inputs to a network was beyond the capac-

ity of the simulation software, some preprocessing was necessary. All of the data

files containing the correlation signatures were processed in the following manner.

First, the data files were reduced to 500 points by averaging consecutive pairs of

data points together. Next, the data point with the largest absolute value was found

and all data points divided by this value. The result of these two steps was a 500

point signature pattern linearly compressed to values between -1 and 1. The final

step was to extract a 50 point window centered about the peak positive value of the

correlation product pattern. The position of the maximum positive value was found

and the 50 data points roughly centered on this position were extracted and written

to a file. A total of 101 class 1 and 108 class 2 exemplar patterns were available to

train the networks. The data sets used by the simulator to train networks for the

different experiments were constructed from this pool of exemplars. The details of

the construction of the data sets may be found in Appendix B.

3.2-.4 Definitions and Notation. Before proceeding with the descriptions of

the experiments, the terms and notation used in the remainder of this thesis must be

defined. There are several metrics used by the NeuralGraphics simulator to evaluate

network performance: total error, right classification, and good classification. The

3-5

error for a given exemplar is defined as

error = ((d,- (3.1)
i=1

where m is the number of output nodes, d is the desired output, and y the actual

output. The total error over the entire training set is just the sum of the error for

each training exemplar. The network yields a right classification if the error at each

output node, for that exemplar, is less than 0.2. A good classification only requires

that the maximum output occur at the node representing the class of the input

exemplar [11]. For example, if the desired output for a given exemplar were [1, 0, 01,

then [0.91, 0.09, 0.09] would be a right classification and [0.7, 0.5, 0.4] would be a

good classification. The percentage of right and good classifications are calculated for

both the training set exemplars and the test set exemplars. As previously mentioned,

these five performance metrics are computed after every 1,000 training iterations.

Since the output y is a function of the inputs and the set of weights, ,%, then

for a fixed set of training inputs, it is quite natural to envision an error surface

generated by allowing each weight to vary over its entire range of possible values.

The result is an n dimensional error surface for the given set of training exemplars,

where n is the total number of weights in the network. It is the global minimum

on this surface that the back propagation algorithm seeks to find: in other words,

the specific combination of the n weights that yields the lowest total error. For

3-6

further information on this concept, Tarr [11] provides a very good discussion and

demonstration of the two dimensional case.

As will be seen in the next section, the training history of each performance

metric mentioned will be examined for sets of networks trained under various con-

ditions. However, the bulk of the experiments examine the effect of the training

conditions on only one performance measure after completion of training. The per-

formance metric used is the percent of good classifications on test data set exemplars.

Furthermore, in this thesis, this metric will be viewed in probabilistic terms. For

example, assume a certain trained network is tested with a data set having 50 class

1 exemplars and 50 class 2 exemplars. If the network yields a good classification for

80 of the 100 test exemplars, this will be expressed as P(good) = 0.80. Also, if the

network yields good classification on 35 of the 50 class 1 exemplars and 45 of the 50

class 2 exemplars in the test data set, then these observations will be expressed as

the conditional probabilities, P(1 I 1) = 0.70 and P(2 1 2) = 0.90. It should be clear

that conditional probabilities for incorrect C! -sifn-,- ?r ,- P(?!1) = 1 - P(1 11)

and P(1 I 2) = 1 - P(2 I 2). For this example, the proportions of the class 1

and class 2 exemplars in the test set can be expressed as the a priori probabilities

P(1) = P(2) = 0.50. The characterization of network performance in this manner

is similar to the way information channels are characterized in the communications

field. The conditional probabilities are known as channel transition probabilities and

collectively referred to as the transition probability matrix or P matrix. Networks

3-7

trained for a two class recognition problem are modeled as a binary channel. For

further information regarding channel models, the text by Hamming [12] is an excel-

lent choice. Characterization of network performance with this model was inspired

by the confusion matrix found in the work of Piazza [9]. These confusion matrices

were simply counts of how the input exemplars of each class were distributed over

the output classifications by the network. If the number of test exemplars is suffi-

ciently large, it is not hard to extend the confusion matrix concept to the P matrix

described above.

Finally, a few words regarding the naming conventions used in the rest of this

thesis are in order. Since there are random processes involved in training networks,

the value of the P(good) is a random variable with some probability density function

(PDF), and will have some distribution about a mean. Examination of the effects

of different training conditions or test conditions must be done by examining the

the differences in the distributions of P(good). A sample of these distributions,

or PDFs, will be obtained by training a number of networks for a given set of

conditions and observing the outcomes. In the next section, a total of five sets of

training conditions will be specified. In addition to this, there will be three different

methods for generating distributions of interest. Specifically, the P(1 I 1), P(2 I 2),

and P(good) distributions for (1) observed outcomes of individual networks, (2)

outcomes of majority vote networks constructed from observed outcomes of three

individual networks as shown in Figure 3.2, and (3) the calculated outcomes of

3-8

}Ne B .__.Majority

Input Net B VoteOutput
Rule

LISe C I %1%

Figure 3.2. Diagram of Majority Vote Networks

majority vote nets constructed using the probability matrices of three individual

nets. As one can see, quite a number of different PDFs will need to be named and

referred to. The following shorthand naming conventions shall be used. The letter R

followed by a single digit will specify a set of training conditions for a training run.

The letter S will indicate the distribution is for single nets. The letter M will signify

the distribution is for majority vote nets. The appearance of P11, P22, or PG will

designate the distributions as P(1 1 1), P(2 1 2), or P(good), respectively. A letter C

prepended to the name indicates a calculated distribution. As an example, the string

RlSP1l refers to the P(1 1 1) distribution for the single nets of Run 1. Similarly,

the string CR5MPG refers to the calculated P(good) distribution for majority vote

networks of Run 5.

3-9

3.3 Experiment Design.

All of the experiments defined in this section are designed to examine the

influence that various conditions have on the good classification performance metric.

For each experiment, the purpose or intent, network training and testing conditions,

and expected results will be specified. Additionally, the data requirements and

distribution nomenclatures will also be given.

3.3.1 Training Performance. While not an actual experiment in the true

sense of the word, the documentation of how the networks train to their final states

is of general interest. It can guide future research using the same data sets by

documenting a baseline performance for comparisons. The raw data required for

documenting the training history of the performance metrics were the history files of

nets trained in the runs to be specified in the following sections. Each performance

metric will be averaged over 30 nets trained in a given run, at 1,000 iteration inter-

vals. These averages will be plotted against iterations to yield a training performance

curve.

3.3.2 Characterization of ANN Performance with the P Matrix Model. In

this experiment, the validity of using a P matrix to characterize the performance

of trained networks will be tested. Specifically, the stationarity of the matrix over

different test data sets for networks trained in the same manner, will be examined.

Thirty networks were trained using the same 102 training exemplars. The initial

3-10

weights at the start of training and the presentation order of training exemplars

were different for each net trained. These networks were tested with a baseline data

set having 50 class 1 exemplars and 50 class 2 exemplars. The same networks were

also tested with data sets having a 40/60% mix of class 1 to class 2 exemplars. Thirty

of these data sets were constructed from the baseline test set by randomly removing

12 class 1 exemplars and adding seven class 2 exemplars. The same seven class 2

exemplars were added to each test set. The results of testing the 30 nets with the

baseline test set will be called Run 1, while the results of testing the 30 nets with

data sets having the 40/60% exemplar mix will be called Run la. Note that the

S designation for single nets, has been omitted in this case since there will be no

majority vote nets constructed for these runs.

A total of seven distributions were needed to perform the experiment. The

distributions for the conditional probabilities, P(1 1) and P(2 1 2), and the joint

probability, P(good), were generated for each run. In addition, a calculated P(good)

distribution was generated by using the P matrices of Run I and assuming the a

priori probabilities P(1) = 0.40 and P(2) = 0.60. The nomenclatures for these

distributions are; R1PIl, R1P22, RIPG, CR1PG, RIAPIl, R1AP22, and R1APG.

If the P matrices are stationary with respect to test data sets, then the following

results should be expected. There should be no difference between the P(I 11) and

P(2 I 2) distributions of either run, nor should there be any difference between the

calculated P(good) distribution of Run 1 and the P(good) of Run la. The difference

3-11

between the P(good) PDFs of Run 1 and Run la should be due only to the change

in the a priori probabilities of the exemplar classes in the test data sets.

3.3.3 Controlling f Matrix Symmetry. From the preliminary training runs,

it was known that the conditional matrices for nets trained with a 50/50% mix of

exemplar classes were asymmetric. The good classification of class 1 exemplars was

much poorer than for class 2 exemplars. If this P matrix were for a communications

channel, adjustments would be made so that the channel was symmetric [12:143].

Assuming it would be desirable to have a neural network with a symmetrical P

matrix, a question arises: Is it possible to cause the P matrix to move toward

symmetry? This experiment is designed to answer this question.

The P matrix PDFs of Run 1 will be used as the baseline case of trained

network responses. Another run of nets, which -hall be referred to as Run 2S, were

trained with a 60/40% mix of class 1 to class 2 exemplars. The training sets were

constructed by randomly removing 17 class 2 exemplars from the baseline training set

of Run 1. A total of 30 of these training sets were constructed in this manner, each

one slightly different with regard to the exact set of class two exemplars included.

The test set exemplars for all of these nets were identical to the test set used for

Run 1. The three new PDFs of interest are the P(1 I 1), P(2 I 2), and P(good) of

Run 2S which will have the nomenclatures R2SP11, R2SP22, and R2SPG.

If the networks are trained harder on class 1 exemplars, as in Run 2S, then the

weight space solutions found by the nets should shift to be more favorable to class

3-12

1 recognition. In terms of the PDFs, the mean value of the P(l 1 1) PDF in Run 2

should be greater than that of Run 1, and the mean of the P(2 I 2) PDF of Run 2

should be less than that of Run 1. It is hoped that the means of the two P(good)

distributions are essentially the same.

3.3.4 Improvement of Classification Performance via Majority Vote Rule.

This experiment is designed to determine if classification performance can be im-

proved by using a majority vote decision rule over three separately trained nets. In

addition, the conditions of training necessary to achieve this improvement will be

explored. The idea proposed here is very similar to the use of redundancy in com-

munications systems to reduce probability of symbol or bit error. Basically, for a

channel having a specified probability of bit error, two redundant bits are sent for

every information bit. If the cause of corruption (noise) is independent and uncorre-

lated during each successive bit transmission, then the joint probability that two or

all three bits are in error will be much less than that of any single bit. However, in

order to realize the improvement, there must be independence from one trial to the

next. It is obvious that the solutions found by the successively trained networks are

not totally independent; the back propagation algorithm is seeking the same global

minimum on the same error surface on each trial. However, one cannot say that the

solutions are totally dependent either, since it has been observed that the nets do

not end up in exactly the same place in weight space [9:page 4-9].

3-13

Four runs of nets trained under different conditions were required for this

experiment. The test data sets for these four runs were identical. Recall that Run 2S

nets were trained such that initial weights, presentation order of training exemplars,

and exact composition of the training data set were varied from one net to the

next. An additional 90 nets were trained in this manner. These nets were then

used three at a time to construct 30 majority vote nets as shown in Figure 3.2.

The P matrices for these nets were generated by observing the decisions of each of

the single nets for the test set exemplars and determining the final classification by

majority vote. At the same time, a calculated majority vote matrix was generated

by assuming independence and using the P matrices of the the 90 single nets three

at a time. The actual comparisons will only use the P(good) PDF of each of the

matrices. This same basic procedure was repeated for runs 3, 4, and 5: 120 nets were

trained, 30 nets were used to construct the single net PDFs, the other 90 to construct

the majority vote and calculated majority vote PDFs. The nets of Run 3 were all

trained on the same data set, but the initial weights and exemplar presentation

orders were different for every net. In Runs 4 and 5, the training data sets were

the same as Run 3, but in Run 4, only the initial weights varied, while in Run 5,

only the presentation order varied. The nomenclatures for the PDFs to be compared

are: R2SPG, R2MPG, CR2MPG, R3SPG, R3MPG, CR3MPG, R4SPG, R4MPG,

CR4MPG, R5SPG, R5MPG, and CR5MPG.

3-14

If there is a sufficient degree of independence in the outcomes of the single nets

of any of the runs, the result should be that the average of the majority vote P(good)

PDF is greater than that of the single nets. This gain in average performance should

be some portion of the gain for the calculated majority vote nets. Also, comparisons

between the majority vote gains of the different runs should provide some insight

into the relative degree each controlled condition contributes to the randomness of

the weight space solutions found by the nets.

3.3.5 Influence of Training Data Sets, Initial Weights, and Exemplar Presen-

tation Order on Network Solutions. This experiment uses the data obtained while

training the nets of runs 2 through 5. The intent of this experiment is to discover

the degree of similarity of decision regions formed by nets in a given run.

For each network trained in the previous experiment, a list of the exact exem-

plars incorrectly classified by that net was generated. The lists for the first 30 nets

trained in each run will be compiled into a master list for each run. The list %ill

contain the file name of all the exemplars incorrectly classified by any of the 30 nets

in a given run. In addition, the exact number of nets in the run that incorrectly

classified each exemplar on the list will be recorded.

The expected results in this case can only be stated in general terms. If the

decision regions formed by the nets of a given run are all relatively similar, then it

should be found that a majority of the test exemplars on the list were incorrectly

classified by most, if not all, of the networks trained for that run. In other words, if

3-15

two nets find exactly the same solution, they should make exactly the same mistakes.

On the other hand, if two nets find equally good, but very different decision regions,

then even though each net makes the same number of mistakes, the mistakes made

by one may be quite different than those made by the other.

3.3.6 Summary. The previous subsections specified the purpose, training and

testing parameters, and expected results of each experiment. The training runs were

set up to train the networks and obtain the raw data. The raw data was then

used to generate the different distributions required for the various experiments.

Each training run had a unique set of training and testing parameters. Table 3.1

summarizes these parameters for all of the training runs described in the preceeding

paragraphs.

3.4 Analytical Methods.

The quantities being dealt with in this thesis are samples of populations. In

some cases, the samples may in fact be from the same population and in other cases,

from entirely different populations. By analysis and comparison, we hope to discover

which of these statements apply to the sample distributions being compared. The

experiments outlined in the previous section were designed with this goal in mind.

The determination of whether the PDFs being compared come from the same or

from different populations will be the results from which the conclusions will be

drawn. The method chosen to do this is hypothesis testing. The PDFs were tested

3-16

Table 3.1. Summary of Experiment Run Parameters

Run Designation
Parameter RI R IA R2 R3 R4 R5
of Nets
Trained 30 * 120 120 120 120
of Training
Exemplars 102 * 85 102 102 102
Training
Set Mix 50/50 % * 60/40 % 50/50 % 50/50 % 50/50 %
class 1/class 2 _

Identical
Training Sets Yes * No Yes Yes Yes
of Test
Exemplars 100 95 100 100 100 100
Test Set Mix
class 1/class 2 50/50 % 40/60 % 50/50 % 50/50 % 50/50 % 50/50 %
Identical
Test Sets Yes No Yes Yes Yes Yes
Generator Seed
for Initial Variable Variable Variable Variable Variable Fixed
Weights
Generator Seed
for Presentation Variable Variable Variable Variable Fixed Variable
Order
Majority Vote
Networks No No Yes Yes Yes Yes
Distribution RIP11 RlAP11 R2SP11 R3SP11 R4SP1l R5SP11
Nomenclatures RIP22 R1AP22 R2SP22 R3SP22 R4SP22 R5SP22

R1PG RIAPG R2SPG R3SPG R4SPG R5SPG
CR1PG R2MP11 R3MPl1 R4MPl1 R5MP11

R2MP22 R3MP22 R4MP22 R5MP22
R2MPG R3MPG R4MPG R5MPG

CR2MPI1 CR3MPl1 CR4MP1l CR5MP1l
CR2MP22 CR3MP22 CR4MP22 CR5MP22
CR2MPG CR3MPG CR4MPG CR5MPG

• This run tested nets produced in RI with different test sets

3-17

using a commercial software package, Statistizx", from NH Analytical Software [131,

running on an IBM compatible personal computer. For all comparisons -quality is

the standard null hypothesis. Alternative hypotheses may be inequality, less than,

ur 6reater than, ai it fit the particular comparison. Additionally, the standard level

of significance for all tests will be a = 0.05. The software package provides the

p-value for all tests. A p-value is the probability that the observed difference in the

samples could have occurred by random chance. Thus, a very low p-value indicates

that the samples are not from the same population. If the p-value falls below the a

value, the null hypothesis is rejected, and one may accept the applicable alternative

hypothesis.

There are many test statistics available for hypothesis testing. The parametric

tests are, in general, more powerful, but require that the samples come from a normal

population. Non-parametric tests only require that the observations be independent.

As a standard procedure, the results will include a test for normality using the Wilk-

Shapiro test statistic [14]. A table of the percentage points for this test statistic has

been provided in Appendix C. Whenever the assumption of normality holds, a

parametric Two-Sample t-test will be performed, otherwise, non-parametric tests

will be used. The non-parametric tests available are; the Wilcoxon Signed Rank

Test, Rank Sum Test, Kruskal-Wallis One Way Analysis of Variance (AOV), and

the Median Test. For further information on hypothesis testing or test statistics,

refer to [13] [15] [16].

3-18

IV. Results

4.1 Introduction.

This chapter documents the major results of this thesis effort. First the average

training performance histories are presented. These performance curves show how

the networks reached their final states. The final states are more closely analyzed

in the remaining sections covering comparisons of the various output probability

density functions (PDF) of populations obtained from net responses to test set data.

4.2 Training Performance.

There are several metrics used to evaluate the training performance of neural

networks: the error over the training data, percent of right and good classifications

over the training data, percent of right and good classifications over the test data.

These metrics are usually used to judge the worth of different training algorithms

or data sets. All of these metrics were obtained for 30 nets trained in a given run.

The training histories for Run 1 were not recorded because these nets were trained

under the same conditions as the nets of Run 3. The histories for runs 4 and 5 are

not shown due to the fact that they parallel the history for Run 3 so closely, that

it becomes difficult to distinguish one from the other on the plots. The following

sections discuss the training history of each metric for Run 2 and Run 3.

4-1

A 8.

g :

6 Legend Key
T ...e.. Run 2
0 5. Run3
t
a 4

3
E
r 2
r
o 1 1 "r 0.....:.~::::.' ::'. ...-- .-

0
1
I I I I " ""l""m'".. I............1 1. -.......

0 2 4 6 8 10 12 14 16 18 20
Iterations x 1000

Figure 4.1. Training Histories for Average Total Error

4.2.1 Average Error History. The average error histories over 30 nets trained

in Run 2 and Run 3 are shown in Figure 4.1. The figures show that by 12,000

iterations the error was well past the knee on both curves and appears to be asymp-

totically approaching zero. Note that the curve for Run 2 converges to zero slightly

faster than Run 3. No analysis was performed to determine if this difference was

significant.

4.2.2 Average Right Classification Histories on Training Data. The histories

of average percent right classification on training data for Run 2 and 3 are shown in

Figure 4.2 . After 1,000 iterations, the nets of both runs average close to 10% and

4-2

100

R 80
e /
c 8

o 60

n Legend Key
i 40 ![..o..Run 2t 4 ... o.. Run3

0 20

01

0 I I

0 5 10 15 20
Iterations x 1000

Figure 4.2. Training Histories of Right Classification on Training Data

by 10,000 iterations are at or near 100%. At 10,000 iterations, both runs were well

past the knee of their respective curves.

4.2.3 Average Good Classification Historie on Training Data. The histories

of average percent of good classification on training data for Run 2 and 3 are shown

in Figure 4.3. After 1,000 iterations, the nets of Run 2 averaged close to 60%, while

Run 3 nets averaged only slightly better than 50% . By 10,000 iterations, both runs

were at or near 100% classification and well past the knee of their respective curves.

4-3

100 .

R 80
e /
c"
o 60 */
g 0

n Legend Key
i 40

.. 4*.. Run 2
t ...o.. Run3
i

20
0

n
0 I I

0 5 10 15 20

Iterations x 1000

Figure 4.3. Training Histories of Good Classification on Training Data

4-4

4.2.4 Average Right Classification Histories on Test Data. Figures 4.4 and

4.5 show the histories of percent right classification on test data for Run 2 and

Run 3, respectively. Since the performance on test data is of particular interest

in this thesis, the plots show additional information about the distributions. Each

figure shows plots of the average values, the average plus one standard deviation.

and the average minus one standard deviation. After 1,000 iterations, the ne'= of

Run 2 show 20% classification accuracy, while Run 3 nets were closer to 35%. Both

curves are well past the knee at 10,000 iterations. At 20, 000 iterations, the average

for Run 3 was slightiy better than for Run 2. Finally, the variance in both runs

appears constant after 10,000 iterations and the variance of Run 2 is significantly

greater than Run 3. At 20,000 iterations, the standard deviation was 3.597 for Run

2 and 1.892 for Run 3.

4.2.5 Average Good Classification Histories on Test Data. Figures 4.6 and

4.7 show the histories of percent good classification on test data for Run 2 and Run

3, respectively. As before, each figure has plots of the average value, the average plus

one standard deviation, and the average minus one standard deviation. After 1,000

iterations, the nets of Run 2 show just below 60% classification accuracy, while Run

3 nets were closer to 70%. For both curves a point at 10,000 iterations was well past

the knee. Again, after 20,000 iterations, the average for Run 3 was slightly better

than for Run 2. As before, the variance in both runs appears constant after 10,000

4-5

100

e
C

o 60 0

Legend Key
n 40 . .0. s.. Mean
t- ... o.. Mean + Std

, ... *.. Mean - Std

20 *"

0 0

0 5 10 15 20
Iterations x 1000

Figure 4.4. Training Histories of Right Classification on Test Data for Run 2

100

R 80 v ,. t t
e

o 60 at

g ,. Legend Key
n /... e.. Mean

40 o.. Mean + Std

t - ..*. Mean - Std

i
20

n

0 I
0 5 10 15 20

Iterations x 1000

Figure 4.5. Training Histories of Right Classification on Test Data for Run 3

4-6

100

R 80
e

o 60

9 Legend Key
. Mean

4 40 ...o.. Mean + Std
t ... *.. Mean- Std

0 20n 0

0 10 15
022

Iterations x 1000

Figure 4.6. Training Histories of Good Classification on Test Data for Run 2

100

R 80 .::~t~~~lIItttI
e

C

o 60-

g Legend Keyn e.... Mean
i 40 ... o.. Mean + Std

t ...*.. Mean -Std
i

20

n

0 I
0 5 10 15 20

Iterations x 1000

Figure 4.7. Training Histories of Good Classification on Test Data for Run 3

4-7

iterations and the variance of Run 2 was significantly greater than Run 3. At 20,000

iterations, the standard deviation was 3.739 for Run 2 and 1.604 for Run 3.

4.2.6 Summary of Training Performance. In general, by 10,000 iterations,

the nets of both runs are asymptotically approaching their best performance. Con-

tinued training provided very little gain in any of the performance metrics. It is

curious to note that even though Run 2 had better error performance than Run 3,

it consistently had lower average classification performance on the test data. The

algorithm for back propagation of error works by minimizing the error between the

actual output and the desired output. Thus, one expects to see that nets with the

smallest error yield the best classification performance. It was also observed that

Run 2 networks exhibited greater variance of good classification on test data than

did Run 3 nets. Finally, note that in both runs, the variance of good classification

on test data was quite constant after 10, 000 iterations and further training did not

appear to reduce it.

4.3 Characterization of ANN Performance with the P Matrix Model.

This section presents the results of comparing the PDFs of Run 1 and Run

1A. Specifically, the conditional PDFs, P(1 I 1) and P(2 I 2), and the joint PDFs,

P(good) of both runs, will be compared. Additionally, comparisons between the

calculated P(good) PDF of Run 1 and the observed P(good) of Run IA will be made.

Recall that the calculated PDF was generated by using the observed conditional

4-8

Table 4.1. Summary Statistics for Distributions of Run 1 and Run 1A

Run P(good)
ID Metric P(I 1) P(2 12) Observed Calculated

R1 Mean 0.7380 0.9213 0.8297 0.8480
STD 0.0384 0.0185 0.0190 0.0164

R1A Mean 0.7263 0.9304 0.8488 NA
STD 0.0542 0.0178 0.0223 NA

Difference RIA - R1 RIA - CR1
of Means -0.0117 0.0091 0.0191 .0008

PDFs of the nets of Run 1 and assuming a priori probabilities of the test set exemplar

classes to be P(1) = 0.40 and P(2) = 0.60.

Table 4.1 shows the average and standard deviation of the PDFs of interest.

Additionally, the difference in the average values are shown in the last row of the

table. The summary statistics are excerpts from Tables A.I and A.2 located in

Appendix A. The table shows that the largest difference is between the observed

joint PDFs, P(good), of Run 1A and Run 1, while the smallest difference was between

the observed P(good) PDF of Run 1A and the calculated P(good) PDF of Run 1.

The results of testing each PDF against the null hypothesis that they are

normally distributed are shown in Table 4.2. It can be seen from the table that, at

a = 0.05, the null hypothesis must be rejected for all but two of the distributions.

Based on these results, we are restricted to non-parametric tests of significance.

Table 4.3 shows the results of testing the null hypothesis that the sample distri-

butions being compared are actually samples from the same population. Note that

4-9

Table 4.2. Results of Test for Normality for Run 1 and Run la Distributions

H0 : Samples are from a normal distribution
Criterion : Reject null if WS < 0.927, otherwise, Fail to reject
Distribution RIPll R1P22 R1PG RlAP1l R1A22 R1APG CR1APG
Wilk-Shapiro
Statistic .9140 .8773 .9000 .9093 .8562 .9588 .9367
Decision R R R R R F F

Table 4.3. Results of Hypothesis Tests Between Run 1 and Run la Distributions

H0 : Samples are from the same distribution
Criterion : Reject null if p < 0.05, otherwise, Fail to reject
Test Wilcoxon Rank Kruskal-Wallis Median

I Signed Rank Sum One Way AOV Test
Comparison p F/R p F/R p F/R p F/R
R1Pll - R1APll .1156 F .4643 F .4577 F .2274 F
R1P22 - RlAP22 .0000 R .0215 R .0186 R .0503 F
R1PG - R1APG .0000 R .0001 R .0001 R .0001 R
CR1PG - R1APG .6343 F .7731 F .7668 F .8172 F

there is a failure to reject the hypothesis for the comparisons between the two P(1 I 1)

PDFs and between the calculated P(good) of Run 1 and the observed P(good) of

Run 1A. There is also a unanimous agreement between the tests to strongly reject

the hypothesis for Run 1A and Run 1 P(good) distributions. Unfortunately, there is

a conflict in the decision about the comparison of the P(2 1 2) PDFs of the two runs.

Three of the four tests dictate a rejection of the null hypothesis. It was expected

that there would be a failure to reject the null hypothesis in this comparison.

4-10

The results presented in this section show no distinguishable difference be-

tween the conditional P(1 I 1) distributions of the two runs or the observed joint

distribution of Run 1A and the calculated joint distribution of Run 1. The tests

show strong evidence that the two P(2 I 2) PDFs are from different populations,

which is exactly opposite of what was expected, even though these PDFs had one of

the smallest differences between their averages. However, the sum of their standard

deviations was also the smallest. When the variances of two samples are small, then

minute differences in their means can be detected by statistical tests.

4.4 Controlling P Matrix Symmetry.

In this section, the PDFs of Run 1 and Run 2S will be compared. The summary

statistics and results of hypothesis testing will be shown. Both runs were tested with

identical test data sets having a 50/50% mix of class 1 and class 2 exemplars, but

the training data sets for the two runs were different. The nets of Run 1 were trained

with a 50/50% mix of exemplars and the nets of Run 2S were trained on a 60/40%

mix of class 1 to class 2 exemplars.

In Table 4.4, the averages and standard deviations of the PDFs of Run 1 and

Run 2S are shown. These figures are excerpts from tables A.1 and A.3 located in

Appendix A. The last row of the table shows the difference in the average values

of the like PDFs of each run. In all three instances, the differences are fairly large.

The reader should note that the P matrix of Run 1 is skewed in favor of the P(2 1 2)

4-11

Table 4.4. Summary Statistics for Distributions of Run 1 and Run 2S

Run
ID Metric P(l I1) P(2 12) P(good)

R1 Mean 0.7380 0.9213 0.8297
STD 0.0384 0.0185 0.0190

R2S Mean 0.7767 0.8320 0.8043
STD 0.0485 0.0560 0.0374

Difference R2S - R1
of Means 0.0387 -0.0893 1 -0.0254

Table 4.5. Results of Test for Normality for Run 1 and Run 2S Distributions

H0 : Samples are from a normal distribution
Criterion : Reject null if WS < 0.927, otherwise, Fail to reject
Distribution R1Pll R1P22 R1PG R2SP11 R2S22 R2SPG
Wilke-Shapiro
Statistic .9140 .8773 .9000 .9455 .9118 .9777
Decision R R I R F R F

PDF while in Run 2S the averages of P(1 I 1) and P(2 I 2) PDFs are closer together

and the average matrix is almost symmetric.

The results of testing each of the PDFs of interest against the null hypothesis

that they are samples from a normal distribution are shown in Table 4.5. For a =

0.05, the null hypothesis is rejected for all but two of the distributions. Since we

will compare the like PDFs of the two runs, we restrict ourselves to non-parametric

hypothesis tests. Table 4.6 shows the results of the these non-parametric tests. The

null hypothesis assumes the sample distributions being compared come from the

same population. In every case, there is unanimous agreement for strong rejection

of this hypothesis.

4-12

Table 4.6. Results of Hypothesis Tests Between Run 1 and Run 2S Distributions

H0 : Samples are from the same distribution
Criterion : Reject null if p < 0.05, otherwise, Fail to reject
Test Wilcoxon Rank Kruskal-Wallis Median

Signed Rank Sum One Way AOV Test
Comparison p F/R p F/R p F/R p F/R
RIP1l - R2SP11 .0081 R .0089 R .0078 R .0153 R
R1P22- R2SP22 .0000 R .0000 R .0000 R .0000 R
R1PG - R2SPG .0059 R .0023 R .0021 R .0001 R

In summary, the results of this section show that all of the PDFs compared

have relatively large differences in their averages. In addition, at a confidence level of

a = 0.05, the differences are significant. The tests indicate that it is highly unlikely

that any of the distributions compared actually came from the same populations.

4.5 Improvement of Classification Performance via Majority Vote Rule.

This section compares the joint P(good) PDFs of runs 2 through 5. Specifically,

the PDFs within each run for the single nets, the observed majority vote nets, and

the calculated majority vote nets will be compared. The calculated majority vote

PDFs represent the expected joint PDF of the outcomes if one assumes independence

between single net outputs. The averages and results of hypothesis testing for these

PDFs will be shown. All runs were tested with identical test data sets having a

50/50% mix of class 1 and class 2 exemplars. However, the training data sets for

Run 2 were different than the training data for runs 3, 4, and 5. Additionally, the

4-13

Table 4.7. Summary of Means for P(good) Distributions of Runs 2 through 5

Run PDF ID Differences
S M CM M -S CM -S

R2 0.8043 0.8223 0.8957 0.0180 0.0914
R3 0.8140 0.8200 0.8998 0.0060 0.0858
R4 0.8183 0.8190 0.8910 0.0007 0.0727
R5 0.8103 0.8083 0.8863 -0.0020 0.0760

reader is reminded that the random number generator seeds for runs 3, 4, and 5 were

controlled parameters.

In Table 4.7, the averages of the P(good) PDFs generated from the runs are

shown. All of the figures are excerpts from tables A.3 through A.14 located in

Appendix A. The first column indicates the run to which the row applies. For the

other column headers, S stands for single nets, M for observed majority vote, and

CM for calculated majority vote.

In all cases, the differences between means of the calculated majority vote PDFs

and the single net PDFs was substantial. These differences should be viewed as the

maximum expected improvement. Thus, if we calculate (M - S/CM - S) x 100 we

have a measure of how close to this maximum the observed values were. These valites

are approximately 19.7%, 7.0%, 1%, and -2.6% for runs 2 through 5, respectively.

The results of testing each PDF for normality are shown in Table 4.8. As shown

in the table we reject the null hypothesis for only the majority vote constructs of runs

4 and 5. Thus, we restrict ourselves to non-parametric tests for these runs. However,

using parametric tests for runs 2 and 3 is justified. Table 4.9 shows the results of

4-14

Table 4.8. Results of Test for Normality for Distributions of Runs 2 through 5

Ho : Samples are from a normal distribution
Criterion : Reject null if WS < 0.927, otherwise, Fail to reject

Distribution R2SPG R2MPG CR2MPG
Wilke-Shapiro

Statistic .9777 .9511 .9662
Decision F F F

Distribution R3SPG R3MPG CR3MPG
Wilke-Shapiro

Statistic .9598 .9352 .9853
Decision F F F

Distribution I R4SPG R4MPG CR4MPG
Wilke-Shapiro

Statistic .9755 .9155 .8787
Decision F R R

Distribution R5SPG R5MPG CRSMPG
Wilke-Shapiro

Statistic .9616 .8744 .9174
Decision F R R

the tests of significance tests for comparisons between the PDFs of singles nets and

majority vote nets within each run. The null hypothesis for all tests was equality. In

every case, there is unanimous agreement for strong rejection of the hypothesis for

the comparison between Run 2 single nets and Run 2 observed majority vote nets.

For all others runs, there is unanimous agreement to fail to reject the hypothesis.

Although not shown in the table, the same tests were performed for the differences

between the PDFs of single nets and calculated majority vote nets. They were not

included in the Table 4.9 because the results can be stated rather simply; out to

four decimal places, all of the p values were zero. This same result applies to a

comparison between the observed and calculated majority vote PDFs.

4-15

Table 4.9. Results of Hypothesis Tests Between PDFs of Single and Majority Vote
Nets for Run 2 through Run 5

SH0 : Samples are from the same distribution
Criterion : Reject null if p < 0.05, otherwise, Fail to reject
Test Wilcoxon Kruskal- Two

Signed Rank Wallis One Median Sample
Rank Sum Way AOV Test T Test

Comparison p F/R p F/R p F/R p F/R p F/R
R2SPG - R2MPG .0490 R .0315 R .0297 R .0175 R 0.0249 R
R3SPG - R3MPG .1886 F .2009 F .1897 F .1677 F 0.1789 F
R4SPG - R4MPG .7897 F .9058 F .8983 F .8841 F NA NA
R5SPG - R5MPG .5531 F .6361 F .6207 F .3659 F NA NA

In summary, the results of this section show that the difference between the

means of the P(good) distributions for single nets and observed majority vote nets of

Run 2 is significant. The difference amounts to approximately 19.7% of the maximum

expected improvement. Conversely, the observed difference in these PDFs for all

other runs is not significant.

4.6 Influence of Training Data Sets, Initial Weights, and Exemplar Presentation

Order on Network Solutions.

In order to gain insight into the differences between the networks of runs 2

through 5, we present here an analysis of which test exemplars were incorrectly

classified in each run. Also, the number of nets that incorrectly classified each of

these exemplars is shown.

Table A.15 in Appendix A contains the complete list of incorrectly classified

4-16

exemplars along with a count of how many nets misclassified each exemplar. There

were 54 exemplars on the list for Run 2, 34 for Run 3, and 30 for Runs 4 and 5. The

maximum number of incorrect classifications is 30, since there were 30 nets trained

in each run. The lists are ordered from highest to lowest number of error counts.

Since the exemplars incorrectly classified by most, or all, 30 nets in a given run are

of particular interest, Table 4.10 shows the top portion of Table A.15.

Table 4.10. Partial List of Incorrectly Classified Test Exemplars in Run 2 Through
Run 5

Run 2S Run 3S Run 4S Run 5S
File Count File Count File Count File Count
corr96 30 corrl7 30 corr17 30 corr25 30
corr25 29 corr25 30 corr25 30 corr37 30
corr194 28 corr37 30 corr37 30 corr96 30
corr53 27 corr96 30 corr4l 30 corr5l 30
corr227 27 corr227 30 corr96 30 corr164 30
corr164 26 corr194 30 corr194 30 corr182 30
corr7 24 corr53 29 corr168 29 corr194 30

Note that Table 4.10 shows that several exemplars appear in all four lists;

corr96, corr25, corr194. Five of the exemplars appear in two or more lists and four

appear in only one list. One might suspect that these exemplars were abnormal or

perhaps corrupted, and should be discarded. However, a visual inspection of the

graphs of these data files failed to reveal any evidence that this was the case. A

comparison of all the exemplars in the lists of Table A.15 revealed that 23 exemplars

were common to all four lists.

4-17

It should be evident by now that even when nets are trained with identical

training sets, as in runs 3 through 5, the solutions found by each net are not all

equivalent. Even if two different nets classify 20 test exemplars incorrectly, those

exemplars are not necessarily the same. All that is known is that the two solutions are

equivalent with respect to classification performance. What is needed is a measure

of the similarity of the decision regions formed by the networks. In the following

paragraphs, a metric for this purpose is proposed.

For the purpose of illustration, assume that several nets trained for a run have

all found exactly the same solution. Clearly, if the decision region boundaries are

the same, each net would incorrectly classify exactly the same exemplars and the

error count for each one is equal to the number of nets trained in the run. There is a

maximum correlation between the errors in classification made by the nets. Define

N as the number of networks trained in the run, and E as the number of different

exemplars on the error list. Let Ci be the the error count for the ith exemplar on

the list. It should be clear that, in this case

E

C,/NE = 1 (4.1)

Now assume the other extreme. Assume each of the N nets misclassifies only

one test set exemplar, but each net misses a different exemplar. The error list now

4-18

contains E = N exemplars, each having an error count of 1. For this situation,

yC,/NE = I/N (4.2)
i=1

This suggests a metric, let it be called L, of the form

E

L= _C+INE (4.3)

which is bounded by 1, for maximum correlation in the error list, and 1/N, for min-

imum correlation. Note that if N approaches infinity, then in the case of minimum

correlation, L could approach zero.

Applying this metric to the lists in Table A.15 the values of L are approximately

0.362, u.54b, 0.606, and 0.667 for runs 2, 3, 4, and 5, respectively. Since, L is

a measure of the similarity of the decision regions formed by the nets of a given

run, one would expect runs with lower L values to yield the greater classification

improvement under a majority vote rule than runs with higher L values. Table 4.9

shows that this is true, with the exception of Run 5.

Figures 4.8 through 4.11 are graphical representations of the counts in Table

A.15. Although the graphs do not show the exemplar labels, there is a one to

one correspondence between the columns of the respective graphs and the entries in

Table A.15 (i.e. column I of Figure 4.8 is the value of the count for the first entry

in the list for Run 2).

4-19

30

* 25"

20"
w
r 15'

10"

g 5

0
0 10 20 30 40 50

Numerical Exemplar Labels

Figure 4.8. Run 2 Incorrectly Classified Exemplar Counts

30

* 25'

20'
w
r 15

0
n 10

g 5

0
0 10 20 30 40 50

Numerical Exemplar Labels

Figure 4.9. Run 3 Incorrectly Classified Exemplar Counts

4-20

30 I I

25-

20w
r 15"
0

10
n

0
0 10 20 30 40 50

Numerical Exemplar Labels

Figure 4.10. Run 4 Inco-rectly Classified Exemplar Counts

30

25'

20'w
r 15
0

n 10'

0
0 10 20 30 40 50

Numerical Exemplar Labels

Figure 4.11. Run 5 Incorrectly Classified Exemplar Counts

4-21

The figures show, in an intuitive way, the reasons for the results presented in

the previous section. Clearly, if one arbitrarily chooses any three nets from a given

run, the exemplars having error counts lower than 15 (i.e. less than a 0.5 probability

of being incorrectly classified in that run) have a greater than 0.5 probability of being

correctly classified under a majority vote rule taken over the three nets. Observe

in Figures 4.8, that Run 2 has 38 exemplars, approximately 70%, which fall into

this category. For Runs 3, 4, and 5, the proportions of exemplars in this category

are approximately 44%, 40%, and 33%, respectively. Based on these proportions,

it could be predicted, for a majority vote rule over three nets, that Run 2 nets

would yield the greatest improvement in classification performance, Run 3 the next

greatest, Run 4 the next, and finally Run 5. The results presented in Table 4.7

support this prediction.

4.7 Summary.

This chapter covered the major results of this thesis effort. First, the averagc

training performance histories, for a variety of metrics, were presented. This provided

information about how fast the networks trained, the general shape and variances of

the curves, and the relationships between the performance metrics. Next, evidence

demonstrating the stationarity and control of P matrix distributions constructed

from network responses to test data was examined. Then, results of comparisons be-

tween the performance PDFs of single networks and majority vote networks for four

4-22

different training runs, were examined. Finally, a close inspection of the incorrectly

classified exemplars for each run was performed.

4-23

V. Conclusions and Recommendations

This final chapter contains the closing remarks and conclusions based on the

evidence and results presented in Chapter IV. In addition, recommendations for

future research are provided. The reader should be aware that the conclusions pre-

sented here only apply to the two class recognition problem for the data sets used

in this study. It would be premature to apply these conclusions to ANNs trained on

other data sets or even a three class problem using the same type of data sets.

5.1 Conclusions.

5.1.1 Training Performance.

Conclusion. A three-layer back propagation neural network can

train directly on correlation signatures of direct sequence (DS) and linearly stepped

frequency hopped (FH) spread spectrum signals. The networks can be expected to

yield at or near 100% classification accuracy on training data sets and at or near

80% accuracy on test data sets after 10,000 training iterations. Additionally, the

overall standard deviation of test set classification accuracy can be expected to be

less than 2%.

Discussion. It is clear from the plots shown in Section 4.2 that

by 10,000 iterations, the nets were at or near their maximum values for any of

5-1

the classification performance metrics. Additional training past 10, 000 iterations

provided little, if any, improvement in test set classification accuracy. Additionally,

no reduction in the variance was observed.

5.1.2 Characterization of ANN Performance with the P Matrix Model.

Conclusion. The P matrix model is a valid and useful tool for

describing and evaluating ANN classification performance.

Discussion. It was shown in Section 4.3 that the P matrix ob-

tained from testing 30 networks on one test data set accurately predicted the joint

PDF obtained by testing the nets with data sets having a different proportions of ex-

emplars. There was essentially no difference in the P matrices obtained from testing

the nets with either test data set. While this statement is true for the conditional

PDFs of class 1 exemplars, it may be debatable for the PDFs of class 2 exemplars.

However, it was observed that the nets did very well at recognizing class 2 exem-

plars and the PDFs had much smaller variances. This small variance caused three

of four tests of significance to reject the null hypothesis that the distributions were

the same, even though there was a relatively small difference in their means. Thus,

it may be argued, from a practical viewpoint, that there was actually no difference

between these PDFs. The implication of these observations is that the responses

of the networks were stationary. The change observed in the average joint P(good)

PDF was due only to the change in the a priori probabilities P(1) and P(2). Thus,

5-2

the conditional P matrix is a more useful description of a network's classification

performance than the joint probability, P(good).

5.1.3 Controlling f Matrix Symmetry.

Conclusion. Given that training on a particular data set does not

yield the desired conditional classification performances, it is possible to change this

by appropriate adjustments in the proportions of exemplar classes in the training

data set.

Discussion. The results in Section 4.4 showed the average condi-

tional probabilities, P(1 1 1) and P(2 I 2), for a particular run of 30 nets to be

0.7380 and 0.9213. The average joint recognition probability was 0.8297. Obviously,

These nets were not recognizing class 1 exemplars as well as class 2 exemplars. The

training data set proportions were changed from a 50/50% mix to a 60/40% mix of

class 1 to class 2 exemplars and another run of 30 nets were trained. The resulting

average conditional probabilities, P(1 1 1) and P(2 1 2) were 0.7767 and 0.8320,

while the joint probability was 0.8043. Statistical tests on the PDFs confirmed that

the changes were significant. The P matrix was indeed adjusted toward symmetry.

Clearly, this demonstrates a technique for controlling the symmetry of ANN classi-

fication behavior. However, the trade-off was a reduction in the joint classification

accuracy. This result is not too surprising because the back propagation of error

algorithm seeks to minimize the error over all training exemplars. If the training

5-3

data set is weighted heavily toward on exemplar class, then clearly, the solution in

the weight space will shift to favor that class since it now has a greater contribution

to the overall error. Of course, the exact proportions needed to achieve symmetry

would be dependent on the relative contribution to the overall error of each class of

exemplars taken as a group. While the experimental objective was to adjust the P

matrix toward symmetry, this may not be desirable for all cases. The point is that

a network's classification response can be adjusted to whatever symmetry is best for

a given application.

5.1.4 Improvement of Classification Performance via the Majority Vote Rule.

Conclusion. If one trains three networks with three different, but

equivalent, training data sets, it is possible to use a majority vote rule to realize an

improvement in average classification performance.

Discussion. In Section 4.5, it was shown that 30 majority vote

networks, constructed from individual nets trained on slightly different data sets,

averaged 1.8% better performance than 30 individual nets trained in the same man-

ner. Statistical tests on the joint recognition PDFs showed this difference to be

significant. The differences in majority vote net performance and individual net per-

formance for three other runs of 30 nets trained on identical training data sets were

not significant.

5-4

5.1.5 Influence of Training Data Sets, Initial Weights, and Exemplar Prcscn-

tation Order on Network Solutions.

Conclusion. The influence of the training data set strongly out-

weighs the influence of initial starting weights and/or the order of presentation of

training exemplars, with regard to the decision regions formed by a given network.

Discussion. In Section 4.6, an examination of the incorrectly clas-

sified test set exemplars was performed. A set of 30 nets were trained for each of four

runs. In Run 2, the exact composition of the training set, initial starting weights,

and presentation order of exemplars, was different for each net trained. In Run 3,

only the initial weights and presentation order were different. In Run 4, only the

initial weights were different and in Run 5, only the presentation orders were dif-

ferent. The values of L, a metric measuring the correlation between the decision

regions formed by the nets within a given run, for Runs 2, 3, 4, and 5 were 0.362,

0.546, 0.606, and 0.667, respectively. These values clearly suggest a relative order

and degree of impact the conditions have on the exact shape of decision regions

formed. The L values indicate that exact composition of the training data set is

most important, the initial set of weights the next most important, and the order of

exemplar presentation the least important.

5-5

5.2 RecommendatioP3.

1. The validity of the findings in this thesis should be tested against more complex

recognition problems. This could be done by obtaining samples of the correla-

tion signatures of randomly driven FH and FH/DS signals, and repeating the

experiments performed in this study for a four class recognition problem.

2. For future research involving this application of ANNs, an appropriate amount

of white gaussian noise should be added to the simulated spread spectrum

signals before the correlation signatures are obtained. The classification per-

formance of ANNs in noisy environments could then be explored.

3. Investigations should be made to determine if ANNs can learn to classify cor-

relation signatures according to some other parameter, such as chip rate or

code length.

4. Test data sets used to evaluate ANN classification performance should be com-

posed of a uniform mix of at least 25 exemplars for each exemplar class. Clearly,

the test data set is a measuring device for determining generalized classification

capabilities of trained networks. As a rule of thumb, if it is desired to measure

a performance metric on a given trial to the nearest ±1/2 unit of the metric,

then the measuring device should have a tolerance of ±1 unit of measure. Ad-

ditionally, a uniform mix of exemplar classes will provide an unbiased estimate

of classification accuracy. It was shown in this thesis, that if the P matrix for

a trained network is not symmetric, it is possible to shift the value of the joint

5-6

classification performance significantly simply by biasing the test set in favor of

one exemplar class or the other. Future research involving evaluation of ANN

performance should report conditional classification accuracies, as well as the

overall joint accuracy.

5-7

Appendix A. Data Tables

The following data tables were contructed from results of network training

runs. Networks were trained to 20,000 iterations and performance tested against

a test data set. Exemplars in the test data sets were not included in the training

data sets. Each observed majority vote network was constructed by drawing three

independently trained single nets from a pool of 90 without replacement. These

nets would vote on the final classification of each test exemplar. Each calculated

majority vote network was contructed by using the P matrices constructed for the

three selected nets. This calculated matrix assumes statistical independence between

the outcome of individual nets, which is to say that there is no relationship between

the classification outcome of any two nets for a particular test exemplar. Although

only the P(1 I 1), P(2 12), and P(good) distributions are used, the P(2 1 1) and

P(1 1 2) probabilities are shown for completeness.

A-I

Table A.I. Observed Probability Matrices for Run 1

P(good)
Net P(l II) P(21 1) P(1 12) P(2 12) Observed Calculated

net1 0.74 0.26 0.08 0.92 0.83 0.848
net2 0.74 0.26 0.08 0.92 0.83 0.848
net3 0.78 0.22 0.08 0.92 0.85 0.864
net4 0.74 0.26 0.08 0.92 0.83 0.848
net5 0.72 0.28 0.08 0.92 0.82 0.840
net6 0.76 0.24 0.04 0.96 0.86 0.880
net7 0.72 0.28 0.06 0.94 0.83 0.852
net8 0.74 0.26 0.08 0.92 0.83 0.848
net9 0.80 0.20 0.10 0.90 0.85 0.860

netlO 0.66 0.34 0.08 0.92 0.79 0.816
netll 0.72 0.28 0.08 0.92 0.82 0.840
netl2 0.74 0.26 0.06 0.94 0.84 0.860
netl3 0.76 0.24 0.04 0.96 0.86 0.880
netl4 0.76 0.24 0.10 0.90 0.83 0.844
net 15 0.80 0.20 0.12 0.88 0.84 0.848
netl6 0.76 0.24 0.08 0.92 0.84 0.856
netl7 0.76 0.24 0.12 0.88 0.82 0.832
netl8 0.68 0.32 0.08 0.92 0.80 0.824
netl9 0.78 0.22 0.10 0.90 0.84 0.852
net20 0.72 0.28 0.08 0.92 0.82 0.840
net2l 0.78 0.22 0.08 0.92 0.85 0.864
net22 0.76 0.24 0.08 0.92 0.84 0.856
net23 0.74 0.26 0.08 0.92 0.83 0.848
net24 0.74 0.26 0.06 0.94 0.84 0.860
net25 0.64 0.36 0.06 0.94 0.79 0.820
net26 0.74 0.26 0.06 0.94 0.84 0.860
net27 0.66 0.34 0.10 0.90 0.78 0.804
net28 0.76 0.24 0.08 0.92 0.84 0.856
net29 0.74 0.26 0.08 0.92 0.83 0.848
net30 0.70 0.30 0.06 0.94 0.82 0.844
Mean 0.7380 0.2620 0.0787 0.9213 0.8297 0.8480
STD 0.0384 0.0384 0.0185 0.0185 0.0190 0.0164

A-2

Table A.2. Observed Probability Matrices for Run la

Net P(1I1) P(211) P(1 12) P(212) P(good)

netl_ a 0.763 0.237 0.070 0.930 0.863
net2_ a 0.711 0.289 0.070 0.930 0.842
net3_ a 0.816 0.184 0.070 0.930 0.884
net4_ a 0.711 0.289 0.070 0.930 0.842
net5_ a 0.711 0.289 0.070 0.930 0.842
net6_ a 0.789 0.211 0.035 0.965 0.895
net7_ a 0.763 0.237 0.053 0.947 0.874
net8_ a 0.763 0.237 0.070 0.930 0.863
net9_ a 0.789 0.211 0.088 0.912 0.863

netl0_ a 0.658 0.342 0.070 0.930 0.821
netl_ a 0.658 0.342 0.070 0.930 0.821
netl2_ a 0.711 0.289 0.053 0.947 0.853
netl3_ a 0.763 0.237 0.035 0.965 0.884
netl4_ a 0.711 0.289 0.088 0.912 0.832
netl5_ a 0.739 0.211 0.123 0.877 0.842
netl6_ a 0.737 0.263 0.070 0.930 0.853
netl7_ a 0.737 0.263 0.105 0.895 0.832
netl8- a 0.711 0.289 0.070 0.930 0.842
net19_ a 0.789 0.211 0.088 0.912 0.863
net20- a 0.658 0.342 0.070 0.930 0.821
net2l a 0.763 0.237 0.070 0.930 0.863
net22_ a 0.737 0.263 0.070 0.930 0.853
net23_ a 0.737 0.263 0.070 0.930 0.853
net24_ a 0.684 0.316 0.053 0.947 0.842
net25_ a 0.553 0.447 0.053 0.947 0.789
net26_ a 0.684 0.316 0.053 0.947 0.842
net27_ a 0.658 0.342 0.088 0.912 0.811
net28_ a 0.763 0.237 0.070 0.930 0.863
net29_ a 0.763 0.237 0.070 0.930 0.863
net30_ a 0.711 0.289 0.053 0.947 0.853

Mean 0.7263 0.2737 0.0696 0.9304 0.8488
STD 0.0542 0.0542 0.0178 0.0178 0.0223

A-3

Table A.3. Observed Probability Matrices for Run 2 Single Nets

Net P(l 1) P(2 11) P(1 12) P(2 12) P(good)

net I 0.82 0.18 0.30 0.70 0.76
net2 0.86 0.14 0.20 0.80 0.83
net3 0.84 0.16 0.22 0.78 0.81
net4 0.78 0.22 0.16 0.84 0.81
net5 0.74 0.26 0.12 0.88 0.81
net6 0.74 0.26 0.24 0.76 0.75
net7 0.74 0.26 0.10 0.90 0.82
net8 0.78 0.22 0.20 0.80 0.79
net9 0.76 0.24 0.12 0.88 0.82
netl0 0.82 0.18 0.18 0.82 0.82
net ll 0.76 0.24 0.10 0.90 0.83
netl2 0.76 0.24 0.12 0.88 0.82
netl3 0.72 0.28 0.22 0.78 0.75
netl4 0.74 0.26 0.22 0.78 0.76
net15 0.76 0.24 0.16 0.?4 0.80
netl6 0.82 0.18 0.14 0.86 0.84
netl7 u.74 0.26 0.18 0.82 0.78
netl8 0.80 0.20 0.22 0.78 0.79
,et19 0.70 0.30 0.18 0.82 0.76

net20 0.80 0.20 0.12 0.88 0.84
net2l 0.78 0.22 0.16 0.84 0.81
net?2 0.82 0.18 0.10 0.90 0.86
net23 0.72 0.28 0.12 0.88 0.80
ne"-4 u.72 0.28 0.12 0.88 0.80
net25 0.74 0.26 0.32 0.68 0.71
net26 u.72 0.28 0.18 0.82 0.77
net27 0.80 0.20 0.10 0.90 C.85
net28 0.90 3.10 0.14 0.86 0.88
net29 0.76 0.24 0.16 0.84 0.80
ntt30 0.86 0.14 0.14 0.86 0.8G
Mean 0.7767 0.2233 0.1680 0.8320 0.8043
STD 0.0485 0.0485 0.0560 0.0560 0.0374 JA

A-4

Table A.4. Observed Probability Matrices for Run 2 Majority Vote Nets

Net P(1 11) P(2 ii) P(i 12) P(2 2) P(good)

mvnetl 0.84 0.16 0.20 0.80 0.82
mvnet2 0.76 0.24 0.10 0.90 0.83
mvnet3 0.80 0.20 0.14 0.86 0.83
mvnet4 0.82 0.18 0.16 0.84 0.83
mvnet5 0.78 0.22 0.14 0.86 0.82
mvnet6 0.76 0.24 0.08 0.92 0.84
mvnet7 0.80 0.20 0.16 0.84 0.82
mvnet8 0.76 0.24 0.12 0.88 0.82
mvnet9 0.78 0.22 0.16 0.84 0.81
mvnetl0 0.82 0.18 0.24 0.76 0.79
mvnetll 0.84 0.16 0.20 0.80 0.82
mvnetl2 0.74 0.26 0.14 0.86 0.80
mvnetl3 0.78 0.22 0.12 0.88 0.83
mvnetl4 0.84 0.16 0.16 0.84 0.84
mvnetl5 0.78 0.22 0.12 0.88 0.83
mvnet 16 0.80 0.20 0.12 0.88 0 ,14
mvnetl7 0.76 0.24 0.14 0.86 0.81
mvnetl8 0.78 0.22 0.i2 0.88 0.83
mvnetl9 0.78 0.22 0.18 0.82 0.80
mvnet20 0.78 0.22 0.20 0.80 0.79
mvnet2l 0.90 0.10 0.20 0.80 0.85
mvnet22 0.80 0.20 0.08 0.92 0.86
mvnet23 0.76 0.24 0.10 0.90 0.83
mvnet24 0.74 0.26 0.18 0.82 0.78
mvnet25 0.78 0.22 0.12 0.88 0.83
mvnet26 0.80 0.20 0.12 0.88 0.84
mvnet27 0.78 0.22 0.16 0.84 0.81
mvnet28 0.76 0.24 0.10 0.90 0,83
mvnet29 0.82 0.18 0.14 0.86 0.84
mvnet30 0.78 0.22 0.18 0.82 0.80

Mean 0.7907 0.2093 0.1460 0.8540 0.8223
STD 0.0338 0.0338 0.0387 0.0387 0.0184

A-5

Table A.5. Calculated Probability Matrices for Run 2 Majority Vote Nets

Net P(1f1) P(2 11) P(112) P(212) P(good)

cmvnetl 0.92 0.08 0.09 0.91 0.92
cmvnet2 0.91 0.09 0.10 0.90 0.91
cmvnet3 0.86 0.14 0.07 0.93 0.89
cmvnet4 0.90 0.10 0.06 0.94 0.92
cmvnet5 0.88 0.12 0.11 0.89 0.88
cmvnet6 0.86 0.14 0.05 0.95 0.91
cmvnet7 0.86 0.14 0.09 0.91 0.89
cmvnet8 0.81 0.19 0.03 0.97 0.89
cmvnet9 0.87 0.13 0.10 0.90 0.88
cmvnetl0 0.90 0.10 0.13 0.87 0.88
cmvnetll 0.93 0.07 0.09 0.91 0.92
cmvnetl2 0.86 0.14 0.10 0.90 0.88
cmvnetl3 0.86 0.14 0.06 0.94 0.90
cmvnetl4 0.90 0.10 0.07 0.93 0.91
cmvnetl5 0.83 0.17 0.10 0.90 0.86
cmvnetl6 0.88 0.12 0.07 0.93 0.90
cmvnetl7 0.88 0.12 0.07 0.93 0.91
cmvnet18 0.86 0.14 0.04 0.96 0.91
cmvnetl9 0.85 0.15 0.13 0.87 0.86
cmvnet20 0.89 0.11 0.14 0.86 0.87
cmvnet21 0.94 0.06 0.09 0.91 0.92
cmvnet22 0.90 0.10 0.07 0.93 0.92
cmvnet23 0.86 0.14 0.05 0.95 0.90
cmvnet24 0.82 0.18 0.08 0.92 0.87
cmvnet25 0.88 0.12 0.10 0.90 0.89
cmvnet26 0.87 0.13 0.05 0.95 0.91
cmvnet27 0.88 0.12 0.07 0.93 0.90
cmvnet28 0.81 0.19 0.03 0.97 0.89
cmvnet29 0.88 0.12 0.11 0.89 0.89
cmvnet30 0.88 0.12 0.11 0.89 0.88

Mean 0.8737 0.1263 0.0822 0.9178 0.8957
STD 0.0313 0.0313 0.0296 0.0296 0.0168

A-6

Table A.6. Observed Probability Matrices for Run 3 Single Nets

Net P(1 11) P(2 11) P(1 12) P(2 12) P(good)

netl 0.68 0.32 0.08 0.92 0.80
net2 0.70 0.30 0.06 0.94 0.82
net3 0.78 0.22 0.10 0.90 0.84
net4 0.70 0.30 0.04 0.96 0.83
net5 0.72 0.28 0.10 0.90 0.81
net6 0.66 0.34 0.06 0.94 0.80
net7 0.72 0.28 0.08 0.92 0.82
net8 0.72 0.28 0.08 0.92 0.82
net9 0.70 0.30 0.08 0.92 0.81

netlO 0.72 0.28 0.08 0.92 0.82
netIl 0.68 0.32 0.04 0.96 0.82
netl2 0.74 0.26 0.08 0.92 0.83
netl3 0.68 0.32 0.06 0.94 0.81
netl4 0.78 0.22 0.10 0.90 0.84
netl5 0.70 0.30 0.08 0.92 0.81
netl6 0.70 0.30 0.10 0.90 0.80
netl7 0.66 0.34 0.08 0.92 0.79
netl8 0.76 0.24 0.08 0.92 0.84
netl9 0.68 0.32 0.06 0.94 0.81
net20 0.70 0.30 0.12 0.88 0.79
net2l 0.72 0.28 0.10 0.90 0.81
net22 0.72 0.28 0.10 0.90 0.81
net23 0.70 0.30 0.10 0.90 0.80
net24 0.70 0.30 0.06 0.94 0.82
net25 0.66 0.34 0.10 0.90 0.78
net26 0.70 0.30 0.10 0.90 0.80
net27 0.74 0.26 0.10 0.90 0.82
net28 0.76 0.24 0.06 0.94 0.85
uiet29 0.70 0.30 0.10 0.90 0.80
-et30 0.76 0.24 0.12 0.88 0.82
Mean 0.7113 0.2887 0.0833 0.9167 0.8140
STD 0.0325 0.0325 0.0207 0.0207 0.0160

A-7

Table A.7. Observed Probability Matrices for Run 3 Majority Vote Nets

Net P(1 1) P(2 11) P(1 12) P(2 12) P(good)

mvnetl 0.74 0.26 0.10 0.90 0.82
mvnet2 0.74 0.26 0.10 0.90 0.82
mvnet3 0.70 0.30 0.10 0.90 0.80
mvnet4 0.72 0.28 0.06 0.94 0.83
mvnet5 0.74 0.26 0.08 0.92 0.83
mvnet6 0.68 0.32 0.10 0.90 0.79
mvnet7 0.72 0.28 0.08 0.92 0.82
mvnet8 0.68 0.32 0.08 0.92 0.80
mvnet9 0.72 0.28 0.10 0.90 0.81
mvnetl0 0.68 0.32 0.06 0.94 0.81
mvnetll 0.78 0.22 0.04 0.96 0.87
mvnetl2 0.72 0.28 0.08 0.92 0.82
mvnetl3 0.70 0.30 0.08 0.92 0.81
mvnetl4 0.74 0.26 0.10 0.90 0.82
mvnetl5 0.72 0.28 0.08 0.92 0.82
mvnetl6 0.68 0.32 0.10 0.90 0.79
mvnetl7 0.78 0.22 0.08 0.92 0.85
mvnetl8 0.70 0.30 0.10 0.90 0.80
mvnetl9 0.74 0.26 0.08 0.92 0.93
mvnet20 0.70 0.30 0.06 0.94 0.82
mvnet2l 0.76 0.24 0.08 0.92 0.84
mvnet22 0.70 0.30 0.08 0.92 0.81
mvnet23 0.74 0.26 0.08 0.92 0.83
mvnet24 0.76 0.24 0.06 0.94 0.85
mvnet25 0.74 0.26 0.10 0.90 0.82
mvnet26 0.70 0.30 0.10 0.90 0.80
mvnet27 0.72 0.28 0.08 0.92 0.82
mvnet28 0.74 0.26 0.08 0.92 0.83
mvnet29 0.70 0.30 0.08 0.92 0.81
mvnet30 0.74 0.26 0.08 0.92 0.83

Mean 0.7227 0.2773 0.0827 0.9173 0.8200
STD 0.0277 0.0277 0.0153 0.0153 0.0175

A-8

Table A.8. Calculated Probability Matrices for Run 3 Majority Vote Nets

Net P(l 11) P(211) P(1j2) P(212) P(good)

cmvnetl 0.83 0.17 0.03 0.97 0.90
cmvnet2 0.82 0.18 0.02 0.98 0.90
cmvnet3 0.79 0.21 0.02 0.98 0.88
cmvnet4 0.82 0.18 0.01 0.99 0.90
cmvnet5 0.80 0.20 0.02 0.98 0.89
cmvnet6 0.80 0.20 0.01 0.99 0.89
cmvnet7 0.83 0.17 0.01 0.99 0.91
cmvnet8 0.78 0.22 0.02 0.98 0.88
cmvnet9 0.80 0.20 0.02 0.98 0.89
cmvnetl0 0.82 0.18 0.01 0.99 0.90
cmvnetll 0.83 0.17 0.01 0.99 0.91
cmvnetl2 0.82 0.18 0.02 0.98 0.90
cmvnetl3 0.82 0.18 0.02 0.98 0.90
cmvnetl4 0.80 0.20 0.03 0.97 0.89
cmvnetl5 0.81 0.19 0.01 0.99 0.90
cmvnetl6 0.83 0.17 0.02 0.98 0.90
cmvnetl7 0.87 0.13 0.02 0.98 0.92
cmvnetl8 0.78 0.22 0.02 0.98 0.88
cmvnetl9 0.83 0.17 0.01 0.99 0.91
cmvnet20 0.84 0.16 0.01 0.99 0.92
cmvnet21 0.85 0.15 0.02 0.98 0.91
cmvnet22 0.81 0.19 0.02 0.98 0.90
cmvnet23 0.82 0.18 0.02 0.98 0.90
cmvnet24 0.84 0.16 0.01 0.99 0.91
cmvnet25 0.82 0.18 0.02 0.98 0.90
cmvnet26 0.80 0.20 0.02 0.98 0.89
cmvnet27 0.82 0.18 0.02 0.98 0.90
cmvnet28 0.82 0.18 0.02 0.98 0.90
cmvnet29 0.83 0.17 0.02 0.98 0.91
cmvnet30 0.82 0.18 0.02 0.98 0.90

Mean 0.8185 0.1815 0.0190 0.9810 0.8998
STD 0.0182 0.0182 0.0052 0.0052 0.0098

A-9

Table A.9. Observed Probability Matrices for Run 4 Single Nets

Net P(l 1) P(2 11) P(1 12) P(2 12) P(good)

netl21 0.74 0.26 0.06 0.94 0.84
net122 0.68 0.32 0.08 0.92 0.80
net123 0.72 0.28 0.06 0.94 0.83
net124 0.72 0.28 0.08 0.92 0.82
net125 0.70 0.30 0.08 0.92 0.81
net126 0.76 0.24 0.06 0.94 0.85
net127 0.66 0.34 0.08 0.92 0.79
net128 0.66 0.34 0.06 0.94 0.80
net129 0.68 0.32 0.10 0.90 0.79
netl30 0.64 0.36 0.08 0.92 0.78
netl31 0.68 0.32 0.04 0.96 0.82
net132 0.74 0.26 0.04 0.96 0.85
net133 0.70 0.30 0.08 0.92 0.81
net134 0.72 0.28 0.08 0.92 0.82
net135 0.74 0.26 0.08 0.92 0.83
net136 0.76 0.24 0.08 0.92 0.84
net137 0.68 0.32 0.04 0.96 0.82
net138 0.72 0.28 0.06 0.94 0.83
net139 0.74 0.26 0.10 0.90 0.82
netl40 0.66 0.34 0.06 0.94 0.80
net141 0.68 0.32 0.08 0.92 0.80
net142 0.68 0.32 0.06 0.94 0.81
net143 0.76 0.24 0.10 0.90 0.83
net144 0.72 0.28 0.08 0.92 0.82
net145 0.70 0.30 0.10 0.90 0.80
net146 0.72 0.28 0.08 0.92 0.82
net147 0.74 0.26 0.06 0.94 0.84
net148 0.74 0.26 0.06 0.94 0.84
net149 0.64 0.36 0.08 0.92 0.78
net150 0.78 0.22 0.06 0.94 0.86
Mean 0.7087 0.2913 0.0720 0.9280 0.8183
STD 0.0371 0.0371 0.0168 0.0168 0.0205

A-10

Table A.10. Observed Probability Matrices for Run 4 Majority Vote Nets

Net P(I 11) P(2 11) P(1 12) P(2 12) P(good)

mvnet31 0.74 0.26 0.08 0.92 0.83
mvnet32 0.74 0.26 0.08 0.92 0.83
mvnet33 0.68 0.32 0.08 0.92 0.80
mvnet34 0.72 0.28 0.08 0.92 0.82
mvnet35 0.70 0.30 0.06 0.94 0.82
mvnet36 0.72 0.28 0.08 0.92 0.82
invnet37 0.74 0.26 0.08 0.92 0.83
mvnet38 0.68 0.32 0.06 0.94 0.81
mvnet39 0.74 0.26 0.10 0.90 0.82
mvnet40 0.66 0.34 0.06 0.94 0.80
mvnet4l 0.74 0.26 0.06 0.94 0.84
rivnet42 0.72 0.28 0.04 0.96 0.84
mvnet43 0.70 0.30 0.08 0.92 0.81
mvnet44 0.72 0.28 0.10 0.90 0.81
mvnet45 0.74 0.26 0.10 0.90 0.82
mvnet46 0.74 0.26 0.08 0.92 0.83
mvnet47 0.70 0.30 0.10 0.90 0.80
mvnet48 0.70 0.30 0.04 0.96 0.83
mvnet49 0.72 0.28 0.08 0.92 0.82
mvnet50 0.72 0.28 0.06 0.94 0.83
mvnet51 0.74 0.26 0.06 0.94 0.84
mvnet52 0.66 0.34 0.06 0.94 0.80
mvnet53 0.72 0.28 0.08 0.92 0.82
mvnet54 0.68 0.32 0 06 0.94 0.81
mvnet55 0.76 0.24 0.10 0.90 0.83
mvnet56 0.74 0.26 0.08 0.92 0.83
mvnet57 0.68 0.32 0.08 0.92 0.80
mvnet58 0.70 0.30 0.08 0.92 0.81
mvnet59 0.72 0.28 0.08 0.92 0.82
mvnet60 0.70 0.30 0.10 0.90 0.80

Mean 0.7140 0.2860 0.0760 0.9240 0.8190
STD 0.0259 0.0259 0.0167 0.0167 0.0127

A-11

Table A.11. Calculated Probability Matrices for Run 4 Majority Vote Nets

Net P(1I1) P(211) P(112) P(212) P(good)

cmvnet3l 0.83 0.17 0.02 0.98 0.91
cmvnet32 0.84 0.16 0.02 0.98 0.91
cmvnet33 0.78 0.22 0.02 0.98 0.88
cmvnet34 0.78 0.22 0.02 0.98 0.88
cmvnet35 0.78 0.22 0.01 0.99 0.88
cmvnet36 0.81 0.19 0.02 0.98 0.89
cmvnet37 0.83 0.17 0.02 0.98 0.91
cmvnet38 0.78 0.22 0.01 0.99 0.89
cmvnet39 0.82 0.18 0.03 0.97 0.89
cmvnet40 0.77 0.23 0.02 0.98 0.88
cmvnet4l 0.83 0.17 0.01 0.99 0.91
cmvnet42 0.80 0.20 0.01 0.99 0.90
cmvnet43 0.78 0.22 0.02 0.98 0.88
cmvnet44 0.79 0.21 0.02 0.98 0.89
cmvnet45 0.82 0.18 0.02 0.98 0.90
cmvnet46 0.84 0.16 0.02 0.98 0.91
cmvnet47 0.82 0.18 0.02 0.98 0.90
cmvnet48 0.79 0.21 0.02 0.98 0.89
cmvnet49 0.78 0.22 0.02 0.98 0.88
cmvnet50 0.79 0.21 0.02 0.98 0.89
cmvnet51 0.80 0.20 0.02 0.98 0.89
cmvnet52 0.76 0.24 0.01 0.99 0.87
cmvnet53 0.81 0.19 0.02 0.98 0.90
cmvnet54 0.77 0.23 0.01 0.99 0.88
cmvnet55 0.83 0.17 0.02 0.98 0.91
cmvnet56 0.82 0.18 0.02 0.98 0.90
cmvnet57 0.78 0.22 0.02 0.98 0.88
cmvnet58 0.78 0.22 11.02 0.98 0.88
cmvnet59 0.78 0.22 0.98 0.88
cmvnet60 0.78 0.22 IV 0.98 0.88

Mean 0.7992 0.2008 G-01 71 0.9829 0.8910
STD 0.0228 0.0228 0.0041 0.0041 0.0112

A-12

Table A.12. Observed Probability Matrices for Run 5 Single Nets

Net P(l 1) P(2 11) P(1 12) P(2 12) P(good)

net241 0.68 0.32 0.10 0.90 0.79
net242 0.74 0.26 0.08 0.92 0.83
net243 0.70 0.30 0.08 0.92 0.81
net244 0.66 0.34 0.08 0.92 0.79
net245 0.72 0.28 0.10 0.90 0.81
net246 0.72 0.28 0.08 0.92 0.82
net247 0.66 0.34 0.08 0.92 0.79
net248 0.76 0.24 0.10 0.90 0.83
net249 0.78 0.22 0.08 0.92 0.85
net250 0.68 0.32 0.08 0.92 0.80
net251 0.72 0.28 0.10 0.90 0.81
net252 0.68 0.32 0.06 0.94 0.81
net253 0.70 0.30 0.06 0.94 0.82
net254 0.70 0.30 0.06 0.94 0.82
net255 0.68 0.32 0.10 0.90 0.79
net256 0.76 0.24 0.08 0.92 0.84
net257 0.66 0.34 0.08 0.92 0.79
net258 0.72 0.28 0.12 0.88 0.80
net259 0.68 0.32 0.06 u.94 0.81
net260 0.64 0.36 0.08 0.92 0.78
nct261 0.74 0.26 0.10 0.90 0.82
net262 0.70 0.30 0.10 0.90 0.80
net263 0.72 0.28 0.08 0.92 0.82
net264 0.66 0.34 0.10 0.90 0.78
net265 0.74 0.26 0.lb 0.90 0.82
net266 0.70 0.30 0.08 0.92 0.81
net267 0.74 0.26 0.06 0.94 0.84
net268 0.72 0.28 0.10 0.90 0.81
net269 0.68 0.32 0.10 0.90 0.79
net270 0.72 0.28 0.06 0.94 0.83
Mean 0.7053 0.2947 0.0847 0.9153 0.8103
STD 0.0338 0.0338 0.0161 0.0161 0.0180

A-13

Table A.13. Observed Probability Matrices for Run 5 Majority Vote Nets

Net P(1 1) P(2 11) P(1 12) P(2 12) P(good)

mvnet61 0.70 0.30 0.08 0.92 0.81
mvnet62 0.70 0.30 0.08 0.92 0.81
mvnet63 0.70 0.30 0.08 0.92 0.81
mvnet64 0.70 0.30 0.08 0.92 0.81
mvnet65 0.74 0.26 0.10 0.90 0.82
mvnet66 0.68 0.32 0.08 0.92 0.80
mvnet67 0.70 0.30 0.10 0.90 0.80
mvnet68 0.66 0.34 0.06 0.94 0.80
mvnet69 0.70 0.30 0.08 0.92 0.81
mvnet70 0.72 0.28 0.08 0.92 0.82
mvnet71 0.66 0.34 0.08 0.92 0.79
mvnet72 0.74 0.26 0.10 0.90 0.82
mvnet73 0.70 0.30 0.08 0.92 0.81
mvnet74 0.72 0.28 0.08 0.92 0.82
mvnet75 0.70 0.30 0.08 0.92 0.81
mvnet76 0.76 0.24 0.08 0.92 0.84
mvnet77 0.66 0.34 0.08 0.92 0.79
mvnet78 0.70 0.30 0.08 0.92 0.81
mvnet79 0.68 0.32 0.06 0.94 0.81
mvnet80 0.70 0.30 0.08 0.92 0.81
mvnet8l 0.70 0.30 0.08 0.92 0.81
mvnet82 0.70 0.30 0.10 0.90 0.80
mvnet83 0.70 0.30 0.10 0.90 0.80
mvnet84 0.68 0.32 0.08 0.92 0.80
mvnet85 0.68 0.32 0.08 0.92 0.80
mvnet86 0.70 0.30 0.08 0.92 0.81
mvnet87 0.70 0.30 0.08 0.92 0.81
mvnet88 0.66 0.34 0.08 0.92 0.79
mvnet89 0.70 0.30 0.08 0.92 0.81
mvnet90 0.74 0.26 0.10 0.90 0.82

Mean 0.6993 0.3007 0.0827 0.9173 0.8083
STD 0.0239 0.0239 0.0100 0.0100 0.0104

A-14

Table A.14. Calculated Probability Matrices for Run 5 Majority Vote Nets

Net P(1I1) P(21 1) P(1 12) P(212) P(good)

cmvnet6l 0.81 0.19 0.02 0.98 0.89
cmvnet62 0.78 0.22 0.02 0.98 0.88
cmvnet63 0.80 0.20 0.02 0.98 0.89
cmvnet64 0.82 0.18 0.02 0.98 0.90
cmvnet65 0.83 0.17 0.02 0.98 0.90
cmvnet66 0.77 0.23 0.02 0.98 0.87
cmvnet67 0.79 0.21 0.02 0.98 0.88
cmvnet68 0.78 0.22 0.01 0.99 0.88
cmvnet69 0.78 0.22 0.02 0.98 0.88
cmvnet70 0.81 0.19 0.02 0.98 0.90
cmvnet7l 0.77 0.23 0.02 0.98 0.87
cmvnet72 0.82 0.18 0.02 0.98 0.90
cmvnet73 0.77 0.23 0.02 0.98 0.87
cmvnet74 0.78 0.22 0.02 0.98 0.88
cmvnet75 0.80 0.20 0.02 0.98 0.89
cmvnet76 0.83 0.17 0.02 0.98 0.91
cmvnet77 0.77 0.23 0.02 0.98 0.87
cmvnet78 0.80 0.20 0.02 0.98 0.89
cmvnet79 0.78 0.22 0.02 0.98 0.88
cmvnet80 0.79 0.21 0.02 0.98 0.89
cmvnet8l 0.78 0.22 0.02 0.98 0.88
cmvnet82 0.80 0.20 0.02 0.98 0.89
cmvnet83 0.80 0.20 0.02 0.98 0.89
cmvnet84 0.76 0.24 0.02 0.98 0.87
cmvnet85 0.78 0.22 0.02 0.98 0.88
cmvnet86 0.81 0.19 0.02 0.98 0.90
cmvnet87 0.78 0.22 0.02 0.98 0.88
cmvnet88 0.78 0.22 0.01 0.99 0.89
cmvnet89 0.78 0.22 0.02 0.98 0.88
cmvnet90 0.82 0.18 0.02 0.98 0.90

Mean 0.7921 0.2079 0.0195 0.9805 0.8863
STD 0.0196 0.0196 0.0040 0.0040 0.0099

A-15

Table A.15. Incorrectly Classified Test Exemplars for Run 2 Through Run .5

Run 2S Run 3S Run 4S Run SS
File Count File Count File Count File Count
corr96 30 corrl7 30 corr17 30 corr25 30
corr25 29 corr25 30 corr25 30 corr37 30
corrl94 28 corr37 30 corr37 30 corr96 30
corr53 27 corr96 30 corr,11 30 corr5l 30
corr227 27 corr227 30 corr96 30 cor-rl 64 30
corr164 26 corrl94 30 corrl94 30 corrl82 30
corr7 24 corr53 29 corr168 29 corrl94 30
corrl82 24 corr7 29 corr53 28 corr29 29
corr37 23 corr5l. 28 corrl64 28 corr53 29
corrl45 23 corrl64 28 corrl82 28 corr170 29
corr170 22 corr182 28 corr227 28 corr241 29
corrl68 20 corrl68 26 corr7 27 corrl7 27
corrl7 17 corr169 26 corr19 26 corrl9 27
corr92 16 corr145 25 corr170 25 corr145 27
corr24l 16 corr4l 24 corr5l 23 corr227 26
corr82 15 corr24l 21 corrl52 22 corr7 22
corr19 13 corr29 20 corr176 15 coz-r57 21
corr3l. 12 corrl9 19 corr24l 15 corr4l 19
corr57 12 corr57 17 corr 29 14 corrl68 19
corr9O 11 corr82 12 cofr82 10 corrl76 19
corr4l 10 corr35 9 corr200 10 corr82 13
corr80 10 corr39 7 corr57 9 corr200 7
corr86 10 corr17 6 7 curr3l 8 corr3l 4
corr88 10 corr 205 4 corr35 5 corr39 4
corr64 9 coff 200 4 corr8C 3 corr151 3
corr66 9 corr3l 3 corr39 3 corr35 2
corr5l 9 corr128 3 corr43 3 corr45 1
corr35 8 corr27 2 corrl90 3 corr2l9 1
corr84 8 corrl9o 2 corr27 2 corrl90 1
corr62 7 corr13 1 corrl84 1 corr202 I
corr70 7 corr43 1
corr254 7 corr59 I
corr29 7 corr178 I
corr27 6 corr20l 1
corrl76 5
corr243 5
corr68 4
corr72 4
corrl9O 4
corr 205 4
corr233 4
corrl49 3
corr200 3
corr202 3
corr231 3
corr 23S 3
corr43 2
corrl47 2
corr39 I
corriSI 1
coff 211 1
corr2l3 I
corr223 I
corr225 1I _____________________ ___

A-16

Appendix B. Data File Samples and Processing Software

B. I Preprocessing of Correlation Product Data Files.

The actual preprocessing of the correlation product data was done using a

commercial digital signal processing package called DADiSP Worksheet tin, by DSP

Developement Corporation, One Kendall Square, Cambridge, MA 02139. The soft-

ware package is a graphics-based spreadsheet with a multi-window environment. The

package has its own Command File language for automating processing tasks. For

completeness, the command line of the windows of the worksheet are shown here,

followed by a sample of a command file used to process the correlation data. Figures

B. I and B.2 show the before and after plots of a typical direct sequence correlation

signature, while figures B.3 and B.4 show before and after plots of a typical frequency

hopped signature.

DADiSP Worksheet$\,-{tm}$ algorithm implementcd in a
worksheet called REDUCE1.

WINDOW 1 : <file read in here>
WINDOW 2 : Decimate(W1,2,1)
WINDOW 3 : Decimate(WI,2,2)
WINDOW 4 : Avg(W2,W3)
WINDOW 5 : Abs(W4) I fmax
WINDOW 6 : W4/getpt(W5,curpos(W5)) I fmax I nmove(-25)
WINDOW 7 : Extract(W6,curpos(W6),50)

13-1

Sample of DADiSP Worksheet$-{tm}$ Command File.

D D:\corrdat 6cr 0 thesis 6cr W L reducel Ocr E
Qcntl..home
Qf8 CORR6.1 6cr 6cr vritea("fcorr6.dat",w7) 6cr
Cf 8 CORR7.1 6cr 6cr writea("fcorr7.dat',w7) 6cr
Cf 8 CORR9.1 6cr 6cr writea("fcorr9.dat",w7) 6cr
Qf 8 CORR1O.1 6cr 6cr writea("fcorrIO.dat',w7) Ocr
Qf8 CORR12.1 6cr 6cr writea("fcorr12.dat",w7) 6cr
Qf 8 CORR13.1 6cr 6cr writea("'fcorrl3.dat",w7) 6cr
Cf 8 CORRM4.1 6cr 6cr writea('fcorr14.dat",w7) 6cr
6f8 CORR15.1 6cr 6cr vritea("fcorr15.dat",w7) 6cr
Qf8 CORR16.1 6cr 6cr writea("fcorr16.dat",w7) 6cr
Qf8 CORR17.1 6cr 6cr writea("Ifcorrl7.dat",w7) 6cr

(Same pattern repeated for each corrXX file)

CfM CORR52.1 6cr 6cr writea('fcorr52.dat',w7) 6cr
Cf 8 CORR53.1 6cr 6cr writea("fcorr53.dat",w7) 6cr
CfM CORR54.1 6cr 6cr writea('fcorr54.dat",w7) 6cr
Qf 8 CORR55.8 Qcr 6cr writea("fcorr55.dat",w7) 6cr
Gf8 CORR56.1 Ocr Ocr writea("fcorr56.dat",v7) Qcr
Cf 8 CORR57.1 6cr 6cr writea("fcorr57.dat",,v7) 6cr
Cf 8 CORR58.1 6cr 6cr vritea("fcorr58.dat",v7) Ocr
Cf 8 CORR59.1 6cr 6cr writea("fcorr59.dat",w7) 6cr
6f8 CORR6O.1 6cr 6cr writea('"fcorr60.dat",v7) 6cr
Gesc Qesc Qesc y Qesc Qesc *esc

B-2

.8

.6

v .4
0 .2

-. 2
S

-.4

-. 6

0 50 100 150 200 250 300 350 400 450 500

Time Units

Figure B.1. Direct Sequence Correlation Product CORR18 Before Processing

.6

V .4 :

0 .2

t
-. 2 .

-. 4
-.6

0 5 10 15 20 25 30 35 40 45 50
Time Units

Figure B.2. Direct Sequence Correlation Product CORR18 After Processing

B-3

1 I I I I

.8

.6

v :

o .2 .
1 0o " " "r'. " ""v ' .4 ; w ; Vt _ _ _"_ _"__ _ _ _ _" "

-. 2

-. 6

-. 8
-1 I I J i " I i I I

0 50 100 150 200 250 300 350 400 450 500

Time Units

Figure B.3. Frequency-Hopped Correlation Product CORR148 After Processing

1 , , , 4 , I , ,

.8

.6

v .4
0 .2~ ... " i :. / /* " :"

-. 4 ,]

-.8
-1 I I I I I : I I I I

0 5 10 15 20 25 30 35 40 45 50

Time Units

Figure B.4. Frequency-Hopped Correlation Product CORR148 After Processing

B-4

B.2 Construction of Datasets.

In this section, the details of how the datasets used to train the networks, were

constructed. The software routine is written in QuickBasicm. The user is prompted

for the number of exemplars to be used for training, the number of exemplars for

testing, the number of classes of exemplars, and the number of elements in each

exemplar. The routine expects the user to provide the name of an input file contain-

ing the a sequence number, filename, and class for each correlation signature to be

included in the dataset. This provides for absolute control over the exact structure

and mix of exemplars in the training and test datasets. The NeuralGraphics simu-

lator reserves the specified number of exemplars for testing from the bottom of the

file. In other words, if 100 test exemplars are specified for a file containing a total

of 250 exemplars, the last 100 exemplars will be used as the test dataset. Presented

here is a sample input file and the source code for the routine CONSTRUC.BAS.

Sample input file for constucting a dataset.

1, "d:\data\corrdatl\fcorr6.dat", 1
2, "d:\data\corrdat4\fcorr6i.dat", 2
3, "d:\data\corrdatl\fcorr9.dat", 1
4, "d:\data\corrdat4\fcorr63.dat", 2
5, "d:\data\corrdatl\fcorrl2.dat", 1
6, "d:\data\corrdat4\fcorr65.dat", 2
7, "d:\data\corrdatl\fcorrl4.dat", 1
8, "d:\data\corrdat4\fcorr67.dat", 2
9, "d:\data\corrdatl\fcorrl6.dat", 1
10, "d:\data\corrdat4\fcorr69.dat", 2

(Same pattern repeated for each file included in dataset)

B-5

192, "d:\data\corrdat4\fcorr233.dat", 2
193, "d:\data\corrdatl\fcorrl94.dat", 1
194, 'd:\data\corrdat4\fcorr235.dat", 2
195, "d:\data\corrdatl\fcorrl96.dat", 1
196, "d:\data\corrdat4\fcorr237.dat", 2
197, "d:\data\corrdatl\fcorrl98.dat", 1
198, "d:\data\corrdat4\fcorr239.dat", 2
199, "d :\data\corrdatl\fcorr2OO.dat", 1
200, "d:\data\corrdat4\fcorr241.dat", 2
201, "d:\data\corrdatl\fcorr202.dat", 1
202, "d:\data\corrdat4\fcorr243.dat", 2

Source Code for CONSTRUC

'Program: CONSTRUC.BAS
'Author: John W. DeBerry
'Description: This routine reads a ASCII data file called
'names$ consisting of multiple lines of a sequence number,
'a filename, and a class number. The filenames contain 50
'element correlation product vectors in a column. Each vector
'is read and then written to a super data file of the name
'specified by the user. The format of the super file is:

Sequence #1, element(O), element(1), ... , element(49)

Class #
Sequence #2, element(O), element(l), ... , element(99)
Class #
Sequence #3, element(O), element(l), .. , element(99)
Class #

EOF

'This super file will be used as an input file for the
'NeuralGraphics simulator written by Greg Tarr.

INPUT "What is the file containing the name & class data"; names$
CLS

B-6

INPUT "What shall I name the super data file"; super$
CLS
INPUT "How many files are to be training vectors"; exemplars%
CLS
INPUT "How many are to be test vectors"; texemplars%
CLS
INPUT "How many classes of vectors are there"; outelements%
CLS
INPUT "How many elements per vector"; inelements%

CLS
DIM vector!(inelements%)

PRINT "Name file - "; names$
PRINT "Super file - "; super$

PRINT
PRINT "File being processed -

OPEN super$ FOR OUTPUT AS #1
OPEN names$ FOR INPUT AS #2
PRINT #1, exemplars%; texemplars%; inelements%; outelements%

DO UNTIL EOF(2)
INPUT #2, number%, file$, class%
LOCATE 4, 26
PRINT file$
OPEN file$ FOR INPUT AS #3
FOR i = 0 TO (inelements% - 1)

INPUT #3, vector!(i)
NEXT i
CLOSE #3
PRINT #1, number%;
FOR i a 0 TO (inelements% - 1)

PRINT #1, vector!(i); "

NEXT i
PRINT #1,

PRINT #1, class.
LOOP
CLOSE
END

B-7

B.3 Processing of NeuralGraphics Output.

In this section, samples of the actual data file output of the NeuralGraphics

software will be shown; one file containing the results of testing a network with

the test data, and one file containing the training history data. Following that the

QuickBasic source code for several routines used to process the data are shown. The

routine PTABLE_2.BAS and MV3TABLE.BAS operate on the network performance

data, while GOOD.BAS operates on the history files. The routine THEORY.BAS

operates on the output files of PTABLE.2.BAS. The first three routines expect two

things, a file containing a list of filenames to operate on, and the actual files specified

by that list. THEORY.BAS uses the names in the list as names for the P matrices

it constructs from the matrices found in the matrix table it operates on. This was

done just to keep from mixing up the matrices.

Sample output file from NeuralGraphics simulator

netl 0.dat

Exemplar # True Class Net Decision
103 1 2
104 2 2
105 1 1
106 2 2
107 1 1
108 2 2
109 1 1
110 2 2
111 1 2
112 2 2
113 1 2

B-8

114 2 2
115 1 1
116 2 2
117 1 1
118 2 2
119 1 2
120 2 2
121 1 1
122 2 2
123 1 1
124 2 2
125 1 1
126 2 2
127 1 1
128 2 2
129 1 1
130 2 2
131 1 2
132 2 2
133 1 1
134 2 2
135 1 2
136 2 2
137 1 1
138 2 2
139 1 1
140 2 2
141 1 1
142 2 2
143 1 1
144 2 1
145 1 2
146 2 2
147 1 2
148 2 2
149 1 1
150 2 2
151 1 2
152 2 1
153 1 1
154 2 2
155 1 1

B-9

156 2 2
157 1 1
158 2 2
159 1 1
160 2 2
161 1 1
162 2 2
163 1 2
164 2 2
165 1 1
166 2 2
167 1 2
168 2 2
169 1 2
170 2 2
171 1 1
172 2 2
173 1 1
174 2 2
175 1 1
176 2 2
177 1 1
178 2 2
179 1 1
180 2 2
181 1 2
182 2 2
183 1 1
184 2 2
185 1 1
186 2 1
187 1 1
188 2 2
189 1 1
190 2 2
191 1 1
192 2 2
193 1 2
194 2 2
195 1 1
196 2 2
197 1 1

B-10

198 2 2
1991
200 2 1
201 1 1
202 2 2
EOF

B-1i

Sample history file produced by NeuralGraphics simulator

Training history - net1O

Seed - 620962919
Count Error Training Test #learned

Right Good Right Good

1000 7.61 11.80 48.80 30.00 62.00 0
2000 5.53 68.50 85.90 65.00 79.00 1
3000 3.64 84.50 92.40 73.00 82.00 25
4000 1.83 96.20 98.70 76.00 84.00 78
5000 1.23 97.20 99.20 76.00 82.00 93

6000 0.43 99.70 100.00 78.00 81.00 99
7000 0.24 100.00 100.00 79.00 81.00 100
8000 0.17 100.00 100.00 79.00 82.00 100
9000 0.15 100.00 100.00 79.00 82.00 100

10000 0.13 100.00 100.00 79.00 82.00 100
11000 0.12 100.00 100.00 80.00 82.00 100
12000 0.11 100.00 100.00 80.00 82.00 100
13000 0.11 100.00 100.00 80.00 82.00 100
14000 0.10 100.00 100.00 79.00 82.00 100

15000 0.10 100.00 100.00 80.00 82.00 100
16000 0.09 100.00 100.00 80.00 82.00 100

17000 0.09 100.00 100.00 80.00 82.00 100
18000 0.09 100.00 100.00 80.00 82.00 100
19000 0.08 100.00 100.00 80.00 82.00 100
20000 0.08 100.00 100.00 80.00 82.00 100
EOF

B-12

'Program: PTABLE_2.BAS

'Author: John W. DeBerry
'This routine reads the data file containing the final
'classifications yielded by a net on the test set exemplars.
'It then calculates the P matrix for that net. Multiplying
'the values of the P matrix by 100 yields the actual observed
'percent correct (or wrong) performance of the net. The
'routine writes this info - a file in rows for each net
'data file in the name$ file. If the user specifies LOTUS
'format, the result is a table ready for import into LOTUS
'for computing the average and STD if each column (P(1/1),

'P(2/1), P(I1/2), P(2/2), and P(good))

OPTION BASE 1

REM $DYNAMIC
LOCATE 23, 2
INPUT "What source file for the data file names"; name$
CLS
LOCATE 23, 2
INPUT "Filename for probability matrix table"; matrix$
CLS
LOCATE 23, 2
INPUT "Filename for out of class vector log"; verror$
CLS
DO

LOCATE 23, 2
INPUT "Do you want Lotus type file"; a$

LOOP UNTIL a$ = "y" OR a$ = "n"

CLS
LOCATE 12, 31
PRINT "WORKING
DIM testinfo%(3), cerror%(2), vectornam%(50), classcount%(2)
DIM prob!(5)

OPEN matrix$ FOR OUTPUT AS #1
OPEN name$ FOR INPUT AS #2
OPEN verror$ FOR OUTPUT AS #3
IF a$ - "n" THEN
PRINT #1 "Net ID P(111) P(211) P(112) P(212) P(good)"
PRINT #1," ---

END IF
PRINT #3 "Net ID Out - of - Class vectors"
PRINT #3," ---

B-13

DO UNTIL EOF(2)

FOR i - 1 TO 2
cerror%(i) - 0
classcount%(i) - 0

NEXT i
wrong% 0 0
INPUT #2, net$
OPEN net$ FOR INPUT AS #4
LINE INPUT #4, junk$
DO UNTIL EOF(4)

INPUT #4, testinfo%(l), testinfoC2), testinfo%(3)
IF testinfo%(2) = 1 THEN

classcount%(l) - classcount%(l) + 1
IF testinfo%(2) <> testinfo.(3) THEN

wrong% - wrong%. + 1
vectornum%(wrong%) = testinfo%(I)
cerror%(1) = cerror%(I) + 1

END IF
ELSEIF testinfo%(2) - 2 THEN

classcount%(2) - classcount%(2) + 1
IF testinfo.(2) <> testinfo%(3) THEN

wrong% - wrong%. + 1
vectornumY(wrong.) - testinfo%(i)
cerror%(2) - cerrorY.(2) + 1

END IF
END IF

LOOP
CLOSE #4
count% - classcount%(1) + classcount%(2)
prob!(2) a cerror%(1) / classcount%(1)
prob!(3) - cerror%(2) / classcount%(2)
probi(i) a 1 - prob!(2)
prob!(4) - 1 - prob!(3)
prob' (5) a (clasucount%(l)/count%)*prob! C1)+

(classcount%(2) /count%) *prob!I(4)
PRINT #3, LEFT*(net$, LEN(net$) - 4);
IF LEN(net$) - 4 - 4 THEN PRINT #3, SPCC4);
IF LEN(netS) - 4 - 5 THEN PRINT #3, SPC(3);
IF LEN~net$) - 4 a 6 THEN PRINT #3, SPC(2);
FOR i a 1 TO wrong%

PRINT 03, vectornum%(i);
NEXT i

B- 14

PRINT #3,
IF a$ - "n" THEN

PRINT #1, LEFT$(net$, LEN(net$) - 4),
FOR i x 1 TO 5

PRINT #1, prob!(i); SPC(4);
NEXT i
PRINT #I,

ELSEIF a$ = "y" THEN
PRINT #1, CHR$(34); LEFTS(net$, LEN(net$) - 4); CHR$(34);
FOR i = I TO 5

PRINT #1, ","; prob!(i);

NEXT i
PRINT #1,

END IF
LOOP
CLS
CLOSE
END

B-15

'Program: MV3TABLE. BAS
)Author: John W. DeBerry
'This routine takes three net decision data files and
'contructs the P matrix for the equivalent majority
'vote network. The P matrix for this equivalent network
'is then written in row format to matrix$. The matrix$
'file can be imported directly into LOTUS.

OPTION BASE 1
REM $DYNAMIC
LOCATE 23, 2
INPUT "What source file for majority vote file names"; name$
CLS
LOCATE 23, 2
INPUT "Filename for probability matrix table"; matrix$
CLS
LOCATE 23, 2
INPUT "Filename for out of class vector log"; verror$
CLS
DO

LOCATE 23, 2
INPUT "Do you want Lotus type file"; a$

LOOP UNTIL a$ - "ty"s OR a$ -Is'
CLS
LOCATE 12, 31
PRINT "WORKING i
DIM tertinfo%(3), cerror%(2), vectornuuX(5O), classcountY.(2)
DIM testinfoiZ(3), testinfo2%(3), testinfo3X(3)
DIM prob!(5)
OPEN matrix$ FOR OUTPUT AS #1
OPEN name$ FOR INPUT AS *2
OPEN verrorS FOR OUTPUT AS #3
IF a$ - "In" THEN

PRINT $1,"'Net ID P(i11) P(211) P(112) P(2 12) P(good)"
PRINT #196 -- I

END IF
PRINT S3,"Net ID Out - of - Class vectors"
PRINT #3,"-- ----------
DO UNTIL EOF(2)

FOR i - 1 TO 2
cerrord(i) - 0

B- 16

classcount%(i) - 0
NEXT i
wrong% - 0
INPUT #2, netl$, net2$, net3$, mvnet$
OPEN net 1$ FOR INPUT AS #4
OPEN net2$ FOR INPUT AS #5
OPEN net3$ FOR INPUT AS #6
LINE INPUT #4, junkc$
LINE INPUT #5, junk$
LINE INPUT #6, junk$
DO UNTIL EOF(6)

INPUT #4, testinfoiX(i), testinfol%(2), testinfol%(3)
INPUT #5, testinfo2%(1), testinfo2%(2), testinfo2.(3)
INPUT #6, testinfo3%(1), testinfo3%(2), testinfo3%(3)
testinfo%(I) - testinfolX(i)
testinfoC2) - testinfoiX(2)
vote% - testinfol%(3) + testinfo2%(3) + testinfo3%(3)
IF vote% <a 4 THEN

testinfo%(3) = 1
ELSEIF vote%. >- 5 THEN

testinfo%(3) - 2
END IF
IF testinfo%(2) = 1 THEN

classcount%(1) - classcouitX(1) + 1
IF testinfo%(2) <> testinfoX(3) THEN

wrong%. - rong% + 1
vectornumX(vrongX) - testinfoX(I)
cerrorX(1) a cerrorX(i) + 1

END IF
ELSEIF testinfo%(2) = 2 THEN

classcount%(2) = classcount%(2) + 1
IF testinfo%(2) <> testinfo%(3) THEN

wrong% = wrong% + 1
vectornuaX(vrongX) - testinfo%(i)
corror%(2) - cerror%(2) + 1

END IF
END IF

LOOP
CLOSE #4
CLOSE #5
CLOSE #6
count% - clasecount%(1) + clanscount%(2)

B-17

prob!(2) - cerror%C1) /classcount%C1)
prob!(3) - cerror%(2) /classcount%(2)
prob!(i) - 1 - prob!(2)
prob!(4) - 1 - prob!(3)
prob! (5) - (classcount%(1)/count%)*prob!l),

(classcount%(2)/count) *prob! (4)
PRINT #3, LEFT*(mvnet$, LEN(iuvnet$) - 4);
IF LEN(mvnet$) - 4 - 6 THEN PRINT #3, SPC(4);
IF LEN(mvnet$) - 4 - 7 THEN PRINT #3, SPC(3);
IF LEN(zuvnet$) - 4 - 8 THEN PRINT #3, SPCC2);
FOR i - 1 TO wrong%

PRINT #3, vectornumV(i);
NEXT i
PRINT #3,
IF a.$ - 'In" THEN

PRINT *I, LEFT$(mvnet$, LEN(mvnet$) - 4),
FOR i - 1 TO 5

PRINT #1, prob!Ci); SPC(4);
NEXT i
PRINT #1,

ELSEIF a$ - "lyl THEN
PRINT #1l, CHR$(34); LEFTS(mvretS, LEN~mvnet$) -4); CHR$(34);
FOR i - 1 TO 5

PRINT #1, 11,16; prob! (i);
NEXT i
PRINT #1,

END IF
LOOP
CLS
CLOSE
END

B-18

'Program: MVTHEORY. BAS
'Author: John W. DeBerry
'This routine constructs the THEORETICAL majority vote
'P matrix from the P matrices of three nets. The computations
'assume independence. The output file matrix$ is row oriented
'and can be directly imported into LOTUS. The three nets used
'to generate the majority vote matrix are read from name$. The
'first majority vote net is constructed from the first three
'net matrices in the single net P matrix table, the next from
'the next three matrices in the table, etc. The total number of
'rows in the single net matrix table should be divisible by three.
'The program reads netname$ for assigning a name to the majority
'vote nets (for flexibility of filenaming). The user must know
'the a priori probabilities of the test set exemplars.

OPTION BASE 1
REM $DYNAMIC
LOCATE 23, 2
INPUT "What source file for single net matrix"; name$
CLS
LOCATE 23, 2
INPUT "Filename for probability matrix table"; matrix$
CLS
LOCATE 23, 2
INPUT "What are the a priori probabilities (class 1, class2)"; pl, p2

LOCATE 23, 2
INPUT "What is the file containing the names of the mvnets"; netname$

LOCATE 12, 31
PRINT "WORKING
DIM n1(5), n2(5), n3(5)
DIM prob'(5)
OPEN matrix$ FOR OUTPUT AS #1
OPEN name$ FOR INPUT AS 02
OPEN netname$ FOR INPUT AS 03
DO UNTIL EOF(2)
INPUT #3, mvnet$
INPUT #2, junk$, nl(i), n1(2), nl(3), n1(4), n1(5)
INPUT #2, junk$, n2(1), n2(2), n2(3), n2(4), n2(5)
INPUT #2, junk$, n3(1), n3(2), n3(3), n3(4), n3(5)
prob! (1)-nl(1)*n2(1)*n3(1)+nl(1)*n2(1)*n3(2)+nl(1)*n2(2)*n3(1)+

n1(2)*n2(1)*n3(1)

B-19

prob'(2)n1 - Prob!(1)
prob' (4)snl (4)*n2(4)*n3(4)+ni (4)*n2(4)*n3(3)+n1C4)*n2(3)*n3C4)+

ni (3) *n2 (4) *n3 (4)

probl(3)ni - prob!(4)

probl(5)wpi*prob!Ci) + p2*probl(4)
PRINT 01, CHR$(34); iuvnet$; CHR$(34);
FOR i - I TO 5

PRINT #1, 1111 prob!(i);
NEXT i
PRINT #l,

LOOP
CLS
CLOSE
END

B.20

'Program: MVTHEORY.BAS
'Author: John W. DeBerry
'This routine reads stripped output from the NeuralGraphics
'simulator and reads only the desired information. It writes

'the P(good) history of each net in rows to a file training$.
'The rows of each P(good) history for each net listed in the
'file filename$ will be written. The training$ file can then
'be used with LOTUS to get the average and STD value at each
'1000 iteration interval up to 20000.

DIM count(20), aerr!(20), tright!(20), tgood!(20), right!(20),
good! (20), learn(20)

INPUT "What filename contains the history file names"; filename$
CLS
INPUT "What filename for the processed data"; training$
CLS
OPEN filename$ FOR INPUT AS #1
OPEN trainings FOR OUTPUT AS #3

PRINT #3, CHR$(34); "Count"; CHR$(34);
PRINT #3,
DO UNTIL EOF(1)

INPUT #1, names
OPEN names FOR INPUT AS #2

FOR i - 1 TO 5
LINE INPUT #2, stuffs

NEXT i
FOR i - 0 TO 19

INPUT #2, count(i),aerr!(i),tright!(i),tgood!(i),right!(i),

good! (i) ,learn(i)
NEXT i
PRINT #3, CHR$(34); LEFT$(name$, LEN(nae$) - 4); CHR$(34);
FOR i a 0 TO 19

PRINT #3, good!(i);
NEXT i

PRINT #3,
CLOSE #2

LOOP
CLOSE
END

B-21

Appendix C. Table of Percentage Points of the Wilk-Shapiro

Statistic (reproduced from /14/)

C, i

Table 6. Percentage points of the W teatfor n = 3(1)50

Level

0.oi 0.02 0.45 0.10 0.50 0.90 0.95 0-98 0..4

3 0-753 0-756 0-767 0-789 0.959 0.998 0.999 1.000 1.000
4 -687 -707 -748 -792 -935 *987 -992 -996 -997
5 .686 -715 .762 .806 .927 .979 -986 .991 -993

6 0-713 0-743 0.788 0-826 0-927 0-974 0-981 0-986 0.989
7 .730 -760 .803 -838 -928 -972 -979 -985 -988
8 .749 .778 .818 .851 .932 -972 -978 .984 *987
9 -764 .791 -829 -859 -935 -972 -978 -984 -986

10 -781 .806 .842 -869 -938 -972 -978 -983 -986

11 0-792 0-817 0-850 0-876 0.940 0-973 0-979 0-984 0-986
12 -805 *828 .859 .883 .943 -973 -979 -984 -986
13 -814 -837 .866 .889 .945 -974 -979 -984 .986
14 -825 .846 -874 .895 -947 -975 -980 -984 -986
15 -835 .855 .881 -901 -950 -975 -980 -984 -987

16 0.844 0-863 0-887 0-906 0-952 0-976 0-981 0-985 0-987
17 -851 -869 -892 -910 -954 -977 -981 -985 -987
18 .858 -874 -897 -914 -956 -978 -982 -986 -988
19 -863 -879 -901 -917 -957 -978 -982 -986 -988
20 -868 -884 -905 -920 -959 -979 -983 -986 -988

21 0-873 0-888 0-908 0-923 0.960 0.98o 0-983 0-987 0.989
22 -878 -892 -911 -926 -961 -980 -984 -987 -989
23 -881 -895 -914 -928 -962 -981 -984 -987 -989
24 -884 -898 -916 -930 -963 -981 -984 -987 -989
25 -888 -901 -918 -931 -964 -981 -985 -988 -989

26 0-891 0.904 0-920 0-933 0-965 0-982 0-985 0-988 0-989
27 -894 -906 -923 -935 -965 -982 -985 -988 -990
28 -896 -908 -924 -936 -966 -982 -985 -988 -990
29 -898 -910 -926 -937 -966 -982 -985 -988 -990
30 -900 -912 -927 -939 -967 -983 .985 -988 -900

31 0-902 0-914 0.929 0-940 0-967 0-983 0"986 0-988 0-990
32 -904 -915 -930 -941 -968 -983 -986 -988 -990
33 -906 -917 -931 -942 -968 -983 -986 -989 -990
34 -908 -919 -933 -943 -969 -983 -986 -989 .990
35 -910 -920 -936 -944 -969 .984 -986 .989 -990

36 0-912 0-922 0-935 0-945 0-970 0.984 0-986 0-989 0-990
37 -914 -924 -926 -946 -970 -984 -987 -989 -990
38 -916 -925 -938 -947 -971 .984 -987 -989 -990
39 -917 -927 .920 -948 -971 -984 -987 -989 -991
40 -919 -928 .940 "949 -972 -985 -987 -989 -991

41 0-920 0-929 0-941 0"950 0-972 0-985 0-987 0-989 0.991
42 -922 -930 .942 -951 -972 -985 -987 -989 -991
43 -923 -932 -9" -951 -973 -985 -987 -990 -991
44 -924 -933 .944 -952 -973 -985 -987 .990 -991
45 -926 -934 .945 -953 -973 .985 -988 .990 -991

46 0-927 0-935 0-945 0-953 0-974 0.985 0.988 0.990 0.991
47 .928 -936 -946 .954 -974 .985 .988 .990 -991
48 -929 -937 .947 -954 -974 -985 -988 -990 -991
49 -929 .937 .947 -955 -974 -985 -988 -990 -991
50 -930 -938 -947 -955 -974 -985 -988 -990 -991

Basd on fitted Johnon (1949) S, approximation, se Shapiro k Wk (1965a) for details.

C-2

Bibliography

1. R. L. Pickholtz et al., "Theory of Spread-Spectrum Communication - a Tuto-
rial," IEEE Transactions on Communications, vol. 30, pp. 855-884, May 1982.

2. C. Garvin, Personal Correspondence. U.S. Army, Harry Diamond Laboratories,
Adelphi, Maryland, January - September 1989.

3. R. P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE
ASSP Magazine, pp. 4-22, April 1987.

4. S. K. Rogers and M. Kabrisky, "Biological and Artificial Neural Networks for
Pattern Recognition." School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, Ohio, 1989. Short Course Notes.

5. "Darpa Neural Network Study, October 1987 - February 1988, Executive Sum-
mary." Lincoln Laboratory, Massachusetts Institute of Technology, Lexington
Massachusetts, July 1988.

6. S. E. Troxel et al., "The Use of Neural Networks in PSRI Target Recognition,"
in IEEE International Conference on Neural Networks, pp. 593-600, 1988.

7. R. P. Gorman and T. J. Sejnowski, "Learned Classification of Sonar Targets
Using a Massively Parallel Network," IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 36, pp. 1135-1140, July 1988.

8. D. W. Ruck, "Multisensor Target Detection and Classification," Master's thesis,
AFIT/GE/ENG/87D-56. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB, Ohio, December 1987.

9. C. C. Piazza, "Modified Backward Error Propagation for Tactical Target Recog-
nition," Master's thesis, AFIT/GE/ENG/88D-36. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, Ohio, December
1988.

10. M. K. Lutey, "Problem Specific Applications for Neural Networks," Master's
thesis, AFIT/GE/ENG/88D-23. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, Ohio, December 1988.

11. G. L. Tarr, "Dynamic Analysis of Feedforward Neural Networks Using Simu-
lated and Measured Data," Master's thesis, AFIT/GE/ENG/88D-54. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB,
Ohio, December 1988.

12. R. W. Hamming, Coding and Information Theory. Prentice-Hall, second ed.,
1986.

13. NH Analytical Software, 1958 Eldrige Avenue, Roseville MN 55113, Statistizim,

An Interactive Statistical Analysis Program for Microcomputers.

BIB-1

14. S. S. Shapiro and M. B. Wilk, "An Analysis of Variance Test for Normality,"
Biometrika, vol. 52, pp. 591-611, 1965.

15. S. D. Schlotzhauer and R. C. Littell, SAStm System for Elementary Statistical
Analysis. SAS Institute Inc., Box 8000, SAS Circle, Cary NC 27512-8000.

16. I. Miller and J. E. Freund, Probability and Statistics for Engineers. Prentice-
Hall, third ed., 1985.

BIB-2

Vita

Captain John W. DeBerry

He attended Erskine College in Due West, South Carolina and received a

Bachelor of Science degree in biology in 1978. He enlisted into the United States

Air Force as an officer trainee in 1982. After completion of Officer Training School,

he received his commission on December 22, 1982. He was accepted into the Air

Force Institute of Technology in residence undergraduate degree conversion program

and received a Bachelor of Science degree in Electrical Engineering in March 1985.

He was assigned to the 18i5th Operational Test and Evaluation Squadron where he

served as the Team Chief of a high frequency technical evaluation team until April

1988. In May of 1988, he again entered the School of Engineering, Air Force Institute

of Technology.

VITA-1

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMNO.4o

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

Zb. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GE/ENG/89D-l0

Ba. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONSchool of Engineering (if applicable)AFIT/ENG

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
ir Force Institute of Technology (AU)
right-Patterson AFB OH 45433-6583

[a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

US Army Harry Diamond Labs ILC-HD-ST-OP
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
2800 Powder Mill Rd PROGRAM =PROJECT TASK IWORK UNIT
delphi MD 20783 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)
lassification of Acousto-Optic Correlation Signatures of Spread-Spectrum

Signals Using Artificial Neural Networks
12. PERSONAL AUTHOR(S)
John W. DeBerry, B.S., B.S.E.E., Capt, USAF

13a. TYPE OF REPORT 1l3b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Thesis FROM _ TO 1989 December 121
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necenary and identify by block number)
FIELD GROUP SUB-GROUP Neural Networks, Spread-Spectrum, Signal
12 09 Classification, Pattern Recognition, Backward

Error Propagation
19. ABSTRACT (Continue on reverse if necesary and identify by block number)

The primary goal of this reasearch was to determine if Artificial Neural
etworks (ANNs) can be trained to classify the correlation signatures of
irect sequence and frequency-hopped spread-spectrum signals. Secondary goals
re to (1) determine if network classification performance can be modeled with
conditional probability matrix (2) determine if the symmetry of the matrices

an be controlled, and (3) determine if using a majority vote rule over
ndependently trained networks improves classification performance.

Correlation signatures of the two types of spread-spectrum signals were
btained from United States Army Harry Diamond Laboratories. These signatures
ere preprocessed and separated into various training and testing data sets.
hirty samples of network responses for several sets of training conditions
ere gathered using a neural network simulator.

ANNs trained directly on correlation signature data yielded classification

20. DISTRISUTION I AVAILABILITY OF ABSTRACT 21. AWRACT SECURITY CLASSIFICATIONo3 UNCLASSIFIED/UNLIMITED W] SAME AS RPT. [3 OTIC USERS UNCLASSIFIED
22s. NAME Of RESPONSIBLE INDIVIDUAL t22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
David M. Norman, LtCol, USAF (513) 255-9267 1 AFIT/ENG

DO Form 1473, JUN N Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

BLOCK 19 CONTINUED

stationary with regard to test sets and the ability to shift the
symmetry of the matrices was demonstrated. Improvement of classification
accuracy via majority vote was possible if the nets were trained on
different data sets. An average improvement of 1.8% was found to be
statistically significant at a confidence level of 0.05. A metric was
developed to estimate the similarity of the solutions found by networks
in a given training run.

